Numerical Simulation and Wind Tunnel Test Technologies

A new method of wall profile design for shape-controllable shock wave enhancement

  • ZHAN Dongwen ,
  • YANG Jianting ,
  • YANG Jiming ,
  • ZHU Yujian
Expand
  • Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Received date: 2016-01-11

  Revised date: 2016-03-08

  Online published: 2016-03-21

Supported by

National Natural Science Foundation of China (11132010)

Abstract

The generation of shape and strength controllable shock wave will offer a special way for ignition and combustion experiments. In this paper, a new method has been proposed for smooth enhancement of a shock wave in a shock tube. With the help of shock dynamics theory, a planar-to-planar shock wave enhancement can be obtained through a convergent channel of specially designed smooth concave-convex wall contour, which bends the planar incoming shock wave into a cylindrical convergent one and then planarizes it and finally forms a strengthened planar shock wave. A typical designed wall profile is verified with both numerical simulation and experimental test. It is found that the agreement of shock wave shape is nearly perfect. Furthermore, the influence of some dominant parameters on the shock enhancement process is analyzed. Compared to the traditional way of increasing pressure ratio in a shock tube, the new method is more efficient to increase plane shock wave intensity. Meanwhile, the influences on wall profile and shock front shape are also performed. When the initial shock is relatively strong, the designed wall profile almost remains the same even though the incoming shock Mach number deviates to some extent, which means that a near-perfect straight shape of shock front can be obtained regardless of unavoidable experimental scatters.

Cite this article

ZHAN Dongwen , YANG Jianting , YANG Jiming , ZHU Yujian . A new method of wall profile design for shape-controllable shock wave enhancement[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(8) : 2408 -2416 . DOI: 10.7527/S1000-6893.2016.0071

References

[1] 张若凌, 乐嘉陵, 王苏, 等. 强激波阵面的非平衡特性研究[J]. 实验流体力学, 2006, 20(2):36-49. ZHANG R L, LE J L, WANG S, et al. The research of nonequilibrium characteristics of strong shock front[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(2):36-49(in Chinese).
[2] 高云亮, 李进平, 胡宗民, 等. 准定常强激波马赫反射波形的数值研究[J]. 空气动力学学报, 2008, 26(4):456-461. GAO Y L, LI J P, HU Z M, et al. A numerical investigation on the Mach reflection patterns of quasi-steady strong shock waves[J]. Acta Aerodynamica Sinica, 2008, 26(4):456-461(in Chinese).
[3] MATSUMOTO Y, AMANO T, KATO T N, et al. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave[J]. Science, 2015, 347(6225):974-978.
[4] KJELLANDER M, TILLMARK N, APAZIDIS N. Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects[J]. Physics of Fluids, 2010, 22(11):116102-1-7.
[5] 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1):58-85. WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85(in Chinese).
[6] SRIRAM R, JAGADEESH G. Correlation for length of impinging shock-induced large separation bubble at hypersonic speed[J]. AIAA Journal, 2015, 53(9):2771-2775.
[7] RAGA A C, CANTO J, RODRIGUEZ L F, et al. An analytic model for the strong-/weak-shock transition in a spherical blast wave[J]. Monthly Notices of the Royal Astronomical Society, 2012, 424(4):2522-2527.
[8] 邱华, 王玮, 范玮, 等. U型方管中爆燃向爆震转变特性实验研究[J]. 航空学报, 2015, 36(6):1788-1794. QIU H, WANG W, FAN W, et al. Experimental investigation on characteristics of deflagration to detonation transition in U-bend square tube[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1788-1794(in Chinese).
[9] ZHAI Z G, WANG M H, SI T, et al. On the interaction of a planar shock with a light polygonal interface[J]. Journal of Fluid Mechanics, 2014, 757(2):800-816.
[10] BOND C, HILL D J, MEIRONAND D I, et al. Shock focusing in a planar convergent geometry:Experiment and simulation[J]. Journal of Fluid Mechanics, 2009, 641(12):297-333.
[11] WANG C X, GRUNENFELDER L K, PATWARDHAN R, et al. Investigation of shock wave focusing in water in a logarithmic spiral duct, Part 2:Strong coupling[J]. Ocean Engineering, 2015, 102:185-196.
[12] DIMOTAKIS P E, SAMTANEY R. Planar shock cylindrical focusing by a perfect-gas lens[J]. Physics of Fluids, 2006, 18(3):031705-1-4.
[13] HOSSEINI S H R, TAKAYAMA K. Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube[J]. Shock Waves, 2010, 20(1):1-7.
[14] HAN Z Y, YIN X Z. Shock dynamics[M]. Berlin:Springer, 1993:21-67.
[15] WHITHAM G B. A new approach to problems of shock dynamics. Part I. Two-dimensional problems[J]. Journal of Fluid Mechanics, 1957, 2(2):145-171.
[16] CHESTER W. The quasi-cylindrical shock tube[J]. Philosophical Magazine, 1954, 45(371):1293-1301.
[17] CHISNELL R F. The motion of a shock wave in a channel with applications to cylindrical and spherical shock waves[J]. Journal of Fluid Mechanics, 1957, 2(3):286-298.
[18] ZHAI Z G, LIU C L, QIN F H, et al. Generation of cylindrical converging shock waves based on shock dynamics theory[J]. Physics of Fluids, 2010, 22(4):041701-1-3.
[19] ZHAI Z G, SI T, LUO X S, et al. Parametric study of cylindrical converging shock waves generated based on shock dynamics theory[J]. Physics of Fluids, 2012, 24(2):026101-1-12.
[20] SUN M, TAKAYAMA K. Conservative smoothing on an adaptive quadrilateral grid[J]. Journal of Computational Physics, 1999, 150(1):143-180.

Outlines

/