Electronics and Control

Feed-forward compensation of two-axis gimbal seeker installed on roll missile

  • LIU Xiao ,
  • MO Bo ,
  • LIU Fuxiang ,
  • YAN Xinying
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Received date: 2015-12-02

  Revised date: 2016-03-11

  Online published: 2016-03-15

Abstract

To solve the decoupling control problem of two-axis gimbal seeker installed on the roll missile, the stabilized loop of seeker model is built based on the kinematics and dynamics of the two-axis gimbal. In order to get the closed loop line of sight, the input and output under the roll situation is derived. The decoupling condition is based on the assumption that the pitch and yaw channels have the same transfer function between measuring disturbance angle and optical axis rotation speed. The effect of body roll rate on the tracking accuracy of the seeker is discussed with line of sight angle input, as well as the effect of body roll rate on the disturbance rejection with body attitude disturbance input. A feed forward compensation control method is proposed to reduce the effect of body roll rate. Simulation result shows that the two-axis gimbal seeker with feed-forward compensation control can satisfy the tracking accuracy of the rolling missile.

Cite this article

LIU Xiao , MO Bo , LIU Fuxiang , YAN Xinying . Feed-forward compensation of two-axis gimbal seeker installed on roll missile[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3764 -3773 . DOI: 10.7527/S1000-6893.2016.0076

References

[1] RUE A K. Stabilization of precision electrooptical pointing and tracking systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1969, 5(5):805-819.
[2] HEMAN R, BULTER J. Subsystems for the extended range interceptor (ERINT-1) missile:AIAA-1992-2750[R]. Reston:AIAA, 1992.
[3] O'REILLY P, WALTERS E. Patriot PAC-3 missile program-an affordable integration approach:ADA319957[R]. Dallas:Lockheed Martin Vought Systems Corp., 1996.
[4] RUE A K. Precision stabilization systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(1):34-42.
[5] EKSTRAND B. Equations of motion for a two-axes gimbal system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3):1083-1091.
[6] KENNEDY P J, KENNEDY R L. Direct versus indirect line of sight (LOS) stabilization[J]. IEEE Transactions on Control Systems Technology, 2003, 11(1):3-15.
[7] SEONG K J, KANG H G, YEO B Y, et al. The stabilization loop design for a two-axis gimbal system using LQG/LTR controller[C]//Proceedings of 2006 SICE-ICASE International Joint Conference. Piscataway, NJ:IEEE Press, 2006:755-759.
[8] ABDO M, VALI A R, TOLOEI A R, et al. Modeling control and simulation of two axes gimbal seeker using fuzzy PID controller[C]//Proceedings of 2014 the 22nd Iranian Conference on Electrical Engineering (ICEE). Piscataway, NJ:IEEE Press, 2014:1342-1347.
[9] 崔莹莹, 夏群力, 祁载康. 导引头稳定平台隔离度模型研究[J]. 弹箭与制导学报, 2006, 26(1):22-25. CUI Y Y, XIA Q L, QI Z K. Seeker platform disturbance rejection mathematical model[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1):22-25(in Chinese).
[10] 朱士青, 廖瑛, 雷明兵. 两轴稳定雷达导引头解耦方案研究[J]. 弹箭与制导学报, 2009, 29(5):6-10. ZHU S Q, LIAO Y, LEI M B. Study on decoupling scheme of two-axis stabilized radar seeker[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(5):6-10(in Chinese).
[11] HILKERT J M. Inertially stabilized platform technology concepts and principles[J]. IEEE Control Systems, 2008, 28(1):26-46.
[12] MASTEN M K. Inertially stabilized platforms for optical imaging systems[J]. IEEE Control Systems, 2008, 28(1):47-64.
[13] 姬伟, 李奇. 陀螺稳定平台视轴稳定系统自适应模糊PID控制[J]. 航空学报, 2007, 28(1):191-195. JI W, LI Q. Adaptive fuzzy PID control for LOS stabil ization system on gyro stabilized platform[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):191-195(in Chinese).
[14] DU Y, XIA Q, WANG Z. Effect of seeker disturbance rejection performance on the control system stability[C]//Proceedings of 2010 the 3rd International Symposium on Systems and Control in Aeronautics and Astronautics (ISSCAA). Piscataway, NJ:IEEE Press, 2010:1032-1035.
[15] LIN C L, HSIAO Y H. Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop[J]. IEEE Transactions on Control Systems Technology, 2001, 9(1):108-121.
[16] 徐娇, 王江, 宋韬, 等. 基于扰动观测器的导引头隔离度抑制方法研究[J]. 兵工学报, 2014, 35(11):1790-1798. XU J, WANG J, SONG T, et al. A disturbance observer-based inhibition method for disturbance rejection rate of seeker[J]. Acta Armamentarii, 2014, 35(11):1790-1798(in Chinese).
[17] 宋建梅, 孔丽霞, 范健华. 半捷联图像寻的制导系统导引信息构造方法[J]. 兵工学报, 2010, 31(12):1573-1579. SONG J M, KONG L X, FAN J H. The guidance information reconstruction of semi-strapdown imaging seeker guidance system[J]. Acta Armamentarii, 2010, 31(12):1573-1579(in Chinese).
[18] KHODADADI H, MOTLAGH M R J, GORJI M. Robust control and modeling a 2-DOF inertial stabilized platform[C]//Proceedings of 2011 International Conference on Electrical, Control and Computer Engineering (INECCE). Piscataway, NJ:IEEE Press, 2011:223-228.
[19] WALDMANN J. Line-of-sight rate estimation and linearizing control of an imaging seeker in a tactical missile guided by proportional navigation[J]. IEEE Transactions on Control Systems Technology, 2002, 10(4):556-567.
[20] RICHARD D, ROBERT B. Modern control systems[M]. 11th ed. Marquette:Marquette University Faculty, 2011:34-39.
[21] DEJUN S, DAPENG F, HU L, et al. Bond graph approach to the modeling and simulation of a two-axis pointing and tracking system[C]//Proceedings of 2007 International Conference on Mechatronics and Automation. Piscataway, NJ:IEEE Press, 2007:2337-2341.
[22] 钱杏芳, 林瑞雄. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2012:28-48. QIAN X F, LIN R X. Missile flight aerodynamics[M]. Beijing:Beijing Institute of Technology Press, 2012:28-48(in Chinese).

Outlines

/