ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effect of suction on performance of inward turning inlet with rectangular-to-circular shape transition
Received date: 2015-12-24
Revised date: 2016-03-04
Online published: 2016-03-08
Supported by
National Natural Science Foundation of China (90916029, 91116001)
Various suction schemes are designed for an inward turning inlet with rectangular-to-circular shape transition with controlled Mach number distribution. Experiments and numerical simulations are conducted to analyze the influence of the scheme on the performance of the inlet. The operation characteristics of the design point and the self-starting performance are obtained. The experimental results validate that suction can efficiently improve the performance of the inlet. The bleeding in the downwash concentration region of the top wall can obviously reduce the exit vortex region and improve the back pressure resistance. Compared with those of the original inlet, the total pressure recovery coefficient increases by 3.8% and the critical back pressure increases from 135 times of the free stream static pressure to 150 times at the exit section on the design point (Ma=6.0), when the relative bleeding flux is 0.99%. In addition, the bleeding in the separation region of the top wall can promote the starting ability. When Ma=5.0 and AOA=4°, the inlet realizes self-starting with the relative bleeding flux being 0.78%. When the inlet restarts, the corresponding compression ratio and the total pressure recovery coefficient at the exit section are 30.6 and 0.600, respectively.
Key words: inward turning inlet; suction; wind tunnel test; starting performance; vortex region
LI Yongzhou , ZHANG Kunyuan , SUN Di . Effect of suction on performance of inward turning inlet with rectangular-to-circular shape transition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3625 -3633 . DOI: 10.7527/S1000-6893.2016.0065
[1] CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston:AIAA, 2001:502-504.
[2] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Reston:AIAA, 1994:109-118.
[3] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston:AIAA, 2011.
[4] BILLIG F S, KOTHARI A. Streamline tracing:technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3):465-471.
[5] BULMAN M J, SIEBENHAAR A. The rebirth of round hypersonic propulsion:AIAA-2006-5035[R]. Reston:AIAA, 2006.
[6] BILLIG F S, JACOBSEN L S. Comparison of planar and axisymmetric flowpaths for hydrogen fueled space access vehicles:AIAA-2003-4407[R]. Reston:AIAA, 2003.
[7] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416.
[8] SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2001, 17(2):276-283.
[9] TAYLOR T, VAN WIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths:AIAA-2008-2635[R]. Reston:AIAA, 2008.
[10] GOLLAN R J, FERLEMANN P G. Investigation of REST-class hypersonic inlet designs:AIAA-2011-2254[R].Reston:AIAA, 2011.
[11] XIAO Y B, YUE L J, CHEN L H, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition:AIAA-2012-5978[R]. Reston:AIAA, 2012.
[12] TAM C J, BAURLE R A, STREBY G D. Numerical analysis of stream-traced hypersonic inlets:AIAA-2003-0013[R]. Reston:AIAA, 2003.
[13] JACOBSEN L S, TAM C, BEHDADNIA R. Starting and operation of a streamline-traced Busemann inlet at Mach 4:AIAA-2006-4508[R]. Reston:AIAA, 2006.
[14] 赵一龙, 范晓樯, 王翼, 等. 抽吸对高超侧压进气道自起动性能的影响[J]. 航空动力学报, 2013, 28(5):1101-1106. ZHAO Y L, FANG X Q, WANG Y, et al. Effects of bleeding on self-starting characteristics of side-compresssion hypersonicn inlet[J]. Journal of Aerospace Power, 2013, 28(5):1101-1106(in Chinese).
[15] HÄBERLE J, GVLHAN A. Internal flowfield investigation of a hypersonic inlet at Mach 6 with bleed[J]. Journal of Propulsion and Power, 2007, 23(5):1007-1017.
[16] 张华军, 梁德旺. 某组合发动机进气道抽吸作用分析[J]. 南京航空航天大学学报, 2006, 38(5):577-582. ZHANG H J, LIANG D W. Analysis of suction roles for supersonic inlet on combined engine[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2006, 38(5):577-582(in Chinese).
[17] 李永洲, 张堃元, 张留欢. 抽吸对高超声速内收缩进气道涡流区及起动性能的影响[J]. 航空动力学报, 2016, 31(7):1630-1637. LI Y Z, ZHANG K Y, ZHANG L H. Effect of bleeding on vortex region and starting characteristics of hypersonic inward turning inlet[J]. Journal of Aerospace Power, 2016, 31(7):1630-1637(in Chinese).
[18] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10):2970-2979. LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronamtica Sinica, 2016, 37(10):2970-2979(in Chinese).
[19] KANTROWITZ A, DONALDSON C. Preliminary investigation of supersonic diffusers:NACA-WR L-713[R]. Washington, D.C.:NASA, 1945.
[20] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆内收缩进气道非设计点工作特性[J]. 航空学报, 2016, 37(11):3263-3272. LI Y Z, ZHANG K Y, SUN D. Off-design performance characteristics of inward turning inlet with rectangular-to-circular shape transition with controlled Mach number distribution[J]. Act Aeronautica et Astronamtica Sinica, 2016, 37(11):3263-3272(in Chinese).
[21] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008:27-32. WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2008:27-32(in Chinese).
[22] 刘凯礼. 高超声速进气道动/稳态攻角特性研究[D]. 南京:南京航空航天大学, 2012:20-30. LIU K L. Research on aerodynamic characteristics of hypersonic inlets with dynamic/steady angle-of-attack[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:20-30(in Chinese).
[23] 南向军, 张堃元, 金志光, 等. 矩形转圆形进气道马赫5正8°攻角启动性能分析[J]. 南京航空航天大学学报, 2012, 44(2):146-151. NAN X J, ZHANG K Y, JIN Z G, et al. Start characteristics of hypersonic inlets with rectangular to circular shape transition at Ma5 with attack angle 8°[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(2):146-151(in Chinese).
/
〈 | 〉 |