ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Diffusion rule of foil-surface-type infrared decoy
Received date: 2015-10-26
Revised date: 2015-11-29
Online published: 2016-03-02
Supported by
National Natural Science Foundation of China (61471390)
The surface-type infrared decoy has become an important method against infrared imaging guided missile. In this paper, foil-surface-type infrared decoy is regarded as the research object and the computational fluid dynamics (CFD) is used to obtain the aerodynamic coefficients of a single foil and two parallel foils at different angles of attack. With the analysis of foil movement in the air, the movement of the foil is divided into two phases, i.e., the light-off and complete combustion considering the particularity of combustion pressure. And the motion models of the two stages are established. Based on the motion model of the single foil, thousands of foils' initial probability distribution of posture and rotating angular velocity are set and then the motion equations of thousands of foils are solved at the same time. In this way, the whole space motion diffusion rule of foil-surface-type infrared decoy is obtained. The simulation results show that the diffusion shape of surface-type infrared decoy, which is launched vertically from high-speed motion platform, is the taper cloud with sparse front and dense rear approximately. The diffusion size and motion position of simulation are highly identical with the measured value, and the error is less than 5% of the diffusion size in x direction in particular.
ZOU Tao , WANG Chaozhe , TONG Zhongxiang , JIA Lintong , TONG Qi . Diffusion rule of foil-surface-type infrared decoy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2634 -2645 . DOI: 10.7527/S1000-6893.2016.0023
[1] GOPALAPILLAI R, KIM H D, SETOGUCHI T, et al. On the near-field aerodynamics of a projectile launched from a ballistic range[J]. Journal of Mechanical Science and Technology, 2007, 21(7): 1129-1138.
[2] FEGG M, BANNASH H. Method for offering a phantom target and decoy: America, US6513438B1[P]. 2003-02-03.
[3] SCHLEIJPEN R H M A. Toolset for evaluating infrared countermeasures and signature reduction for ships[C]//Proceedings of SPIE-The Intenational Society for Optical Engineering. Toulouse, France: SPIE, 2010, 7836: 78360F-1-79360F-12.
[4] KOCH E C. Review on pyrotechnic aerial infrared decoys[J]. Propellants, Explosives, Pyrotechnics, 2001, 26(1): 3-11.
[5] BUTTERS B, NICHOLLS E, WALMSLEY R, et al. Infrared decoy and obscurant modeling and simulation for ship protection[C]//Proceedings of SPIE-The Intenational Society for Optical Engineering. Toulouse, France: SPIE, 2011, 8187(1): 75-78.
[6] 赵非玉,卢山,蒋冲,等.面源红外诱饵仿真建模方法研究[J]. 光电技术应用, 2012, 27(2): 66-69. ZHAO F Y, LU S, JIANG C, et al. Research on the modeling method of surface-type infrared decoy [J]. Electro-Optic Technology Application, 2012, 27(2) :66-69(in Chinese).
[7] 付晓红, 樊秋林. 面源红外诱饵的建模与仿真研究[J]. 光电技术应用. 2013, 28(6): 81-86. FU X H, FAN Q L. Research on modeling and simulation of special material decoy [J]. Electro-Optic Technology Application, 2013, 28(6) :81-86(in Chinese).
[8] 陈乃光.光电干扰箔片云团运动规律的仿真研究[J]. 航天电子对抗, 2008,24(5):20-23. CHEN N G. Moving characters simulation of foils cloud used in optics-electronic countermeasure [J]. Aerospace Electronic Warfare, 2008, 24(5) :20-23(in Chinese).
[9] 黄蓓, 王浩, 王帅, 等. 光电干扰箔片抛撤与扩散试验研究[J]. 含能材料, 2012(5): 605-609. HUANG B, WANG H, WANG S, et al. Dispersing experiment for separation and dispersion of multi-plates[J]. Chinese Journal of Energetic Materials, 2012(5): 605-609 (in Chinese).
[10] BADURA W. Device for producing a decoy cloud, in particular an infrared decoy cloud: America, US4621579A[P].1986-11-11.
[11] 郭江涛, 邢存震, 谭献忠, 等. 基于Fluent的亚音速翼型气动特性数值研究[J]. 中原工学院学报, 2012, 23(1): 36-40. GUO J T, XING C Z, TAN X Z, et al. Numerical study on subsonic airfoil aerodyamic characteristics based on the Fluent[J]. Journal of Zhongyuan University of Technology, 2012, 23(1): 36-40 (in Chinese).
[12] HU K, DING Y, ZHANG X Y, et al. A scalable infrastructure for online performance analysis on CFD application [J]. Chinese Journal of Aeronautics, 2012, 25(4): 546-558.
[13] OLLIE H. Technology survey: Airborne dispensers and ir expendables [J]. Journal of Electronic Defense, 2011, 34(6): 59-66.
[14] KOCH E C. 2006-2008 Annual review on aerial infrared decoy flares [J]. Propellants Explos Pyrotech, 2009, 34(1): 6-12.
[15] FENG X Q, LI Z K, SONG B F. Research of low boom and low drag supersonic aircraft design [J]. Chinese Journal of Aeronautics, 2014, 27(3): 531-541.
[16] 李鹏,招启军. 悬停状态倾转旋翼/机翼干扰流场及气动力的CFD计算[J]. 航空学报, 2014, 35(2):361-371. LI P, ZHAO Q J. CFD calculations on the interaction flow field and aerodynamic force of tiltrotor/wing in hover[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 361-371(in Chinese).
[17] 刘雄, 王翼, 梁剑寒. 方转圆对三维侧压进气道的流动特性影响[J].航空学报, 2014, 35(11): 2939-2948. LIU X, WANG Y, LIANG J H. Effect of rectangular-to-circular on flow characteristics of three-dimensional sidewall compression inlet[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2939-2948 (in Chinese).
[18] 郭则庆,王杨,姜孝海, 等.膛口初始流场对火药燃气流场影响的数值研究[J]. 兵工学报, 2012, 33(6): 663-668. GUO Z Q, WANG Y, JIANG X H, et al. Numerical study on effects of precursor flow on muzzle proprellant flow field[J]. Acta Armamen Taii, 2012, 33(6): 663-668(in Chinese).
[19] WU Z J, XU Y Z, WANG W B, et al. Re view of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3): 501-513.
[20] 马东立, 刘亚枫, 林鹏. 航空拖曳诱饵系统的动态特性研究[J]. 航空学报, 2014, 35(1): 161-170. MA D L, LIU Y F, LIN P. Study of dynamic characteristics of aeronautic toeed decoy system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 161-170(in Chinese).
[21] 黄长强, 赵辉, 杜海文, 等. 机载弹药精确制导原理[M]. 北京:国防工业出版社,2011: 164-169. HUANG C Q, ZHAO H, DU H W, et al. The precision guidance theory of airborne mention [M]. Beijing: National Defense Industry Press, 2011: 164-169 (in Chinese).
/
〈 | 〉 |