Electronics and Control

Dynamics and control during spinning deployment for hub-and-spoke configured multi-tethered satellite formation

  • SU Fei ,
  • ZHAI Guang ,
  • ZHANG Jingrui ,
  • ZHANG Yao
Expand
  • School of Astronautics, Beijing Institute of Technology, Beijing 100081, China

Received date: 2015-09-15

  Revised date: 2015-11-04

  Online published: 2016-02-01

Supported by

National Natural Science Foundation of China (11102018); National High-tech Research and Development Program of China (2013AA7042018)

Abstract

The deployment strategies for "hub-and-spoke" configured tethered satellite formation are investigated in circular orbit. Firstly, the deployment dynamics model is established based on Lagrangian method under some reasonable assumptions. The dynamical coupling between the attitude of central body and the tether length is analyzed, and then the deployment strategies for the cases with and without gravity gradient compensation are developed. By planning the deployment rate and angular velocity of central body, the successful deployments are achieved. Finally, some mathematical simulations for the proposed strategies are implemented. The simulation results indicate that using the proposed deployment strategies, the configuration can be maintained effectively and steadily.

Cite this article

SU Fei , ZHAI Guang , ZHANG Jingrui , ZHANG Yao . Dynamics and control during spinning deployment for hub-and-spoke configured multi-tethered satellite formation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2809 -2819 . DOI: 10.7527/S1000-6893.2016.0021

References

[1] DJEBLI A, MAROC T, PASCAL M. A new method for the orbital modification of a tether connected satellite system[J]. Acta Mechanica, 2004, 167(1):113-122.
[2] ZHONG R, ZHU Z H. Optimal control of nano-satellite fast deorbit using electrodynamic tether[J]. Journal of Guidance, Control and Dynamics, 2014, 37(4):1182-1194.
[3] National Research Council. Restoring NASA's technological edge and paving the way for a new era in space: 129-130[R]. Washington, D.C.: National Academies Press, 2012.
[4] KALANTZIS S, MODI V J, PRADHAN S, et al. Order-n formation and dynamics of multibody tethered systems[J]. Acta Astronautica, 1998, 21(2): 277-285.
[5] KALANTZIS S, MODI V J, PRADHAN S, et al. Dynamics and control of multibody tethered systems[J]. Acta Astronautica, 1998, 42(9): 503-517.
[6] MISRA A K, NIXON M S, MODI V J. Nonlinear dynamics of two-body tethered satellite systems: Constant length case[J]. Journal of Astronautical Sciences, 2001, 49(2):219-236.
[7] MISRA A K, AMIER Z, MODI V J. Attitude dynamics of three-body tethered systems[J]. Acta Astronautica, 1988, 17(10):1059-1068.
[8] MISRA A K, MODI V J. Three-dimensional dynamics and control of tether connected n-body systems[J]. Acta Astronautica, 1992, 26(2):77-84.
[9] PIZARRO-CHONG A, MISRA A K. Dynamics of multi-tethered satellite formations containing a parent body[J]. Acta Astronautica, 2008, 63(11-12): 1188-1202.
[10] 马骏, 黄攀峰, 孟中杰, 等. 辐射开环空间绳系机器人编队动力学及控制[J]. 宇航学报,2014,35(7):794-801. MA J, HUANG P F, MENG Z J, et al. Dynamics and control of the hub-spoke tethered space robot formation system[J]. Journal of Astronautics, 2014, 35(7):794-801(in Chinese).
[11] INARREA M, LANCHARES V, PASCUAL A I, et al. Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control[J]. Acta Astronautic, 2014, 96(4):280-295.
[12] ZHONG R, ZHU Z H. Dynamics of nanosatellite deorbit by vare electrodynamic tether in low Earth orbit[J]. Journal of Spacecraft and Rockets, 2013, 50(3): 691-700.
[13] 徐大富,孔宪仁,胡长伟,电动力缆绳的横向振动建模研究[J]. 宇航学报, 2009, 30(2): 453-457. XU D F, KONG X R, HU C W. Modeling study of transvers vibration in electro-dynamic tether[J]. Journal of Astronautics, 2009,30(2): 453-457(in Chinese).
[14] HOYT R. Stabilization of electrodynamic tethers[C]// Joint Propulsion Conferences. Reston: AIAA, 2002: 4045-4052.
[15] 徐秀栋, 黄攀峰, 孟中杰, 等. 空间绳系机器人姿态容错控制方法研究[J], 宇航学报,2012,33(8):1096-1103. XU X D, HUANG P F, MENG Z J, et al. Research on attitude fault tolerant control method for space tethered robot[J]. Journal of Astronautics, 2012, 38(8): 1096-1103(in Chinese).
[16] WILLIAMS P. Optimal deployment /retrieval of a tethered formation spinning in the orbit plane[J]. Journal of Spacecraft and Rockets, 2001, 28(2): 237-242.
[17] HE Y, LIANG B, XU W F. Study on the stability of tethered satellite system[J]. Acta Astronautica, 2011, 68(11-12):1964-1972.
[18] SANYAL A K, SHEN J L, MCCLAMROCH N H, et al. Stability and stabilization of relative equilibria of dumbbell bodies in centralgravity[J]. Journal of Guidance, Control and Dynamics, 2005, 28 (5): 833-842.
[19] 夏洁, 庞兆君, 金栋平. 面内弹性绳系卫星系统的内共振[J]. 振动工程学报, 2012, 25(3): 232-237. XIA J, PANG Z J, JIN D P. Inner resonance of an in-plane elastic tethered satellite system[J]. Journal of Vibration Engineering, 2012, 25(3): 232-237(in Chinese).
[20] MATTIAS G, GUNNAR T. Deployment control of spinning space webs[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 40-50.
[21] MATTIAS G, GUNNAR T. Optimal deployment control of spinning space web and membranes[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1519-1530.

Outlines

/