Fluid Mechanics and Flight Mechanics

Fully distributed control of variable cycle engine

  • XIE Zhenwei ,
  • GUO Yingqing ,
  • JIANG Caihong ,
  • TIAN Feilong ,
  • LI Ruichao
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China;
    2. Shenyang Aeroengine Design and Research Institute, Aero-Engine Corporation of China, Shenyang 110015, China

Received date: 2015-04-17

  Revised date: 2015-12-29

  Online published: 2016-01-26

Supported by

Advanced Aeroengine Technology Research Program;Project Funded by Science and Technology on Scramjet Laboratory

Abstract

Adopting distributed control architecture can reduce the weight of the variable cycle engine control and conducive to the development and expansion of the system. A fully distributed control architecture is proposed. The calculations of control algorithm are completely distributed to the smart actuators. And the parameter values required for the calculation are sent to the smart actuator by smart sensors through a serial data bus. The main work of developing fully distributed control for variable cycle engine is to design decentralized control algorithm and the bus communication program. The coupling of control loops is considered part of the total disturbance. Through estimating the total disturbance and cancelling it in the control signal by linear active disturbance rejection controller (ADRC), decentralized control is realized. Based on the CAN bus hardware, a time triggered bus communication program is designed using the CANaerospace higher layer protocol. Thus the fully distributed control system of variable cycle engine is realized. A simulation system is built in the MATLAB/Simulink environment with TrueTime toolbox. TrueTime Kernel modules are used to simulate computing units of smart actuators and smart sensors. TrueTime Network module is used to simulate CAN bus. The linear ADRC and CANaerospace protocol are written to the computing unit. The simulation results show that the established variable cycle engine fully distributed control system could adapt to a wide range of intake status and changes in health status of the engine and has strong robustness.

Cite this article

XIE Zhenwei , GUO Yingqing , JIANG Caihong , TIAN Feilong , LI Ruichao . Fully distributed control of variable cycle engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1809 -1818 . DOI: 10.7527/S1000-6893.2015.0361

References

[1] DENNIS E C, RANDY T, JOSEPH S. Concepts for distributed engine control:AIAA-2007-5709[R]. Reston:AIAA, 2007.
[2] DENNIS E C, ALICIA M Z, ELIOT A. Developing an integration infrastructure for distributed engine control technologies:AIAA-2014-3532[R]. Reston:AIAA, 2014.
[3] 郭迎清, 章泓. 航空发动机分布式控制系统综述[J]. 航空发动机, 2003, 29(3):52-55. GUO Y Q, ZHANG H. Survey of the distributed control system for an aeroengine[J]. Aeroengine, 2003,29(3):52-55(in Chinese).
[4] 黄金泉, 徐科. 航空发动机分布式控制系统结构分析[J]. 航空动力学报, 2003, 18(5):698-704. HUANG J Q, XU K. Distributed control systems for aeroengines:A survey[J]. Journal of Aerospace Power, 2003, 18(5):698-704(in Chinese).
[5] JEFFREY T, KEVIN L, SIVAK P, et al. Design and system implement considerations for high-temperature distributed engine control:AIAA-2010-6674[R]. Reston:AIAA, 2010.
[6] 宋军强, 潘慕绚, 黄金泉. 航空发动机分布式控制系统技术分析及系统方案[J]. 航空动力学报, 2013, 28(10):2391-2400. SONG J Q, PAN M X, HUANG J Q. Technology analysis and system scheme for aero-engine distributed control system[J]. Journal of Aerospace Power, 2013, 28(10):2391-2400(in Chinese).
[7] JOHNSON J E. Variable cycle engine developments at general electric-1955-1995[M]. Reston:American Institute of Aeronautics and Astronautics, Inc., 1996:105-158.
[8] PETER V, WALTER B, VICTOR F V, et al. Study of an airbreathing variable cycle engine:AIAA-2011-5758[R]. Reston:AIAA, 2011.
[9] 周红, 王占学, 刘增文, 等. 双外涵变循环发动机可变几何特性研究[J]. 航空学报, 2014, 35(8):2126-2135. ZHOU H, WANG Z X, LIU Z W, et al. Variable geometry characteristics research of double bypass variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2126-2135(in Chinese).
[10] 张鑫, 刘宝杰. 核心机驱动风扇级的匹配特性分析[J]. 航空学报, 2015, 36(9):2850-2858. ZHANG X, LIU B J. Analysis of the matching characteristics of the core driven fan stage[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2850-2858(in Chinese).
[11] 韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3):13-18. HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3):13-18(in Chinese).
[12] 韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008:255-262. HAN J Q. Active disturbances rejection control technique:The technique for estimating and compensating the uncertainties[M]. Beijing:National Defense Industry Press, 2008:255-262(in Chinese).
[13] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//2003 Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 2003:4989-4996.
[14] TIAN G, GAO Z Q. Benchmark tests of active disturbance rejection control on an industrial motion control platform[C]//2009 Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 2009:5552-5557.
[15] 张海波, 孙健国. 自抗扰控制算法在发动机加力过渡态控制中的应用[J]. 推进技术, 2010, 31(2):219-225. ZHANG H B, SUN J G. Application of active disturbance rejection control method in aeroengines afterburning transition state control[J]. Journal of Propulsion Technology, 2010, 31(2):219-225(in Chinese).
[16] 王元, 李秋红, 黄向华, 等. 基于ADRC的航空发动机限制保护器设计[J]. 北京航空航天大学学报, 2012, 38(9):1154-1157. WANG Y, LI Q H, HUANG X H, et al. Controller design for limit protection of aero-engine based on ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(9):1154-1157(in Chinese).
[17] 张海波, 王健康, 王日先, 等. 一种航空发动机多变量自抗扰解耦控制律设计[J]. 推进技术. 2012, 33(1):78-83. ZHANG H B, WANG J K, WANG R X, et al. Design of an active disturbance rejection decoupling multivariable control scheme for aero-engine[J]. Journal of Propulsion Technology, 2012, 33(1):78-83(in Chinese).
[18] 任立平, 周军. CAN总线高层协议CANaerospace及其设计应用[J]. 测控技术, 2008, 27(2):59-61. REN L P, ZHOU J. CANaerospace-upper layer protocol for CAN and its design application[J]. Measurement & Control Technology, 2008, 27(2):59-61(in Chinese).
[19] 刘艳强, 郇极. CANaerospace——航空机载设备通信总线协议[J]. 测控技术, 2005, 24(2):46-48. LIU Y Q, HUAN J. CANaerospace-A communication specification for airborne equipments[J]. Measurement & Control Technology, 2005, 24(2):46-48(in Chinese).
[20] 章磊, 祝明, 武哲. 无人直升机系统CAN总线应用层协议设计[J]. 北京航空航天大学学报, 2011, 37(10):1264-1270. ZHANG L, ZHU M, WU Z. CAN bus application layer protocol design for unmanned helicopter system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10):1264-1270(in Chinese).
[21] 王军强, 吕忠民. CAN总线及其高层网络协议在无人飞行器航空电子系统中的应用[J]. 微计算机应用, 2008, 29(11):48-52. WANG J Q, LU Z M. Application of Can bus and its upper layer network protocol in avionics system of unpiloted vehicle[J]. Microcomputer Applications, 2008, 29(11):48-52(in Chinese).
[22] CERVIN A, HENRIKSSON D, LINCOLN B, et al. How does control timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime[J]. IEEE, Control Systems Magazine, 2003, 23(3):16-30.
[23] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007, 1(1):24-31. HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1):24-31(in Chinese).
[24] 李光耀, 郭迎清, 祁新杰. 航空发动机分布式控制系统原理样机研制[J]. 计算机测量与控制, 2009, 17(5):865-868. LI G Y, GUO Y Q, QI X J. Construction of distributed aero-engine control system demonstrator[J]. Computer Measurement & Control, 2009, 17(5):865-868(in Chinese).
[25] 李光耀, 郭迎清, 王海泉. 基于CAN总线的航空发动机分布式控制系统通信研究[J]. 测控技术. 2009, 28(1):62-66. LI G Y, GUO Y Q, WANG H Q. Communication research on CAN based distributed aero-engine control system[J]. Measurement & Control Technology, 2009, 28(1):62-66(in Chinese).
[26] 张天宏, 牟路勇, 丁毅, 等. 基于DSP和CAN总线的发动机电子控制器核心电路模块研究[J]. 航空动力学报, 2005, 20(1):130-135. ZHANG T H, MOU L Y, DING Y, et al. Study of an engine electronic controller's core circuit module based on DSP and CAN[J]. Journal of Aerospace Power, 2005, 20(1):130-135(in Chinese).
[27] 杨全廷, 庞景, 王雷涛, 等. 基于DSP和CAN总线的航空发动机智能位置控制器[J]. 传感器与微系统, 2012, 31(2):109-111. YANG Q T, PANG J, WANG L T, et al. Aero-engine intelligent position actuator based on DSP and CAN bus[J]. Transducer and Microsystem Technologies, 2012, 31(2):109-111(in Chinese).
[28] THOMPSON H A, BENITEZ-PEREZ H, LEE D, et al. CANbus-based safety-critical distributed aeroengine control systems architecture demonstrator[J]. Microprocessors and Microsystems, 1999, 23(6):345-355.
[29] BELAPURKAR R K, YEDAVALLI R K, PALUSZEWSKI P J, et al. Stability analysis of ARINC 825-based partially distributed aircraft engine control with transmission delays and packet dropouts:AIAA-2010-6675[R]. Reston:AIAA, 2010.
[30] 谢振伟, 郭迎清, 陆军. 容积与转子状态量在变循环发动机数值仿真中的应用[J]. 推进技术, 2015, 36(7):1085-1092. XIE Z W, GUO Y Q, LU J. Application of volume and rotor state values in variable cycle engine numerical simulation[J]. Journal of Propulsion Technology, 2015, 36(7):1085-1092(in Chinese).
[31] 陆军, 郭迎清, 陈小磊. 线性拟合法建立航空发动机状态变量模型[J]. 航空动力学报, 2011, 26(5):1172-1177. LU J, GUO Y Q, CHEN X L. Establishment of aero-engine state variable model based on linear fitting method[J]. Journal of Aerospace Power, 2011, 26(5):1172-1177(in Chinese).

Outlines

/