Fluid Mechanics and Flight Mechanics

Numerical simulation of nacelle's effects on propeller slipstream based on IDDES model

  • CHEN Rongqian ,
  • WANG Xu ,
  • YOU Yancheng
Expand
  • School of Aerospace Engineering, Xiamen University, Xiamen 361005, China

Received date: 2015-09-11

  Revised date: 2015-12-18

  Online published: 2016-01-25

Supported by

Aeronautical Science Foundation of China (20155768007);The Fundamental Research Funds for the Central Universities (20720140540, 2013121019);Key Projects of Science and Technology Cooperation Between Universities and Industry, Fujian Province (2015H6023)

Abstract

Unsteady numerical simulation about the mutual effect between the nacelle and the propeller's slipstream was carried out based on unstructured overset grids algorithm. In order to better capture the detail of the propeller vortex structure, improved delayed detached eddy simulation (IDDES) based on Spalart-Allmaras model was employed, and the adaptive grid technique was used to improve the spatial resolution of the flow field's characteristics during the unsteady process. Research results show that the thrust coefficient calculated by IDDES agrees well with the experimental data, and the existence of the nacelle increases the thrust coefficient of the propeller. The nacelle has a great influence on the structure of the hub vortex but little effect on the structure of the propeller tip vortex. For the propeller without nacelle, both the instability process of the tip vortex and the hub vortex show obvious periodic characteristic. The inception region and the paring effects of the tip vortex of the propeller without nacelle are the same as those of the propeller with nacelle, which indicates that the hub vortex has no effect on the instability of the tip vortex.

Cite this article

CHEN Rongqian , WANG Xu , YOU Yancheng . Numerical simulation of nacelle's effects on propeller slipstream based on IDDES model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1851 -1860 . DOI: 10.7527/S1000-6893.2015.0353

References

[1] ROOSENBOOM E, HEIDER A, SCHRÖDER A. Propeller slipstream development:AIAA-2007-3810[R]. Reston:AIAA, 2007.
[2] FERRARO G, KIPOUROS T, SAVILL A. Propeller-wing interaction prediction for early design:AIAA-2014-0564[R]. Reston:AIAA, 2014.
[3] LUGT H J, FLOW V. Introduction to vortex theory[J]. Journal of Fluid Mechanics, 1999, 384(1):375-378.
[4] OKULOV V L. On the stability of multiple helical vortices[J]. Journal of Fluid Mechanics, 2004, 521(15):319-342.
[5] OKULOV V L, SØRENSEN J N. Stability of helical tip vortices in a rotor far wake[J]. Journal of Fluid Mechanics, 2007, 576:1-25.
[6] MUSCARI R, DI MASCIO A, VERZICCO R. Modeling of vortex dynamics in the wake of a marine propeller[J]. Computers & Fluids, 2013, 73(6):65-79.
[7] DI MASCIO A, MUSCARI R, DUBBIOSO G. On the wake dynamics of a propeller operating in drift[J]. Journal of Fluid Mechanics, 2014, 754(9):263-307.
[8] FELLI M, CAMUSSI R, DI FELICE F. Mechanisms of evolution of the propeller wake in the transition and far fields[J]. Journal of Fluid Mechanics, 2011, 682(3):5-53.
[9] BOUSQUET J M, GARDAREIN P. Improvements on computations of high speed propeller unsteady aerodynamics[J]. Aerospace science & Technology, 2003, 7(6):465-472.
[10] STVERMER A W. Unsteady CFD simulation of propeller installation effects:AIAA-2006-4969[R]. Restion:AIAA, 2006.
[11] ROOSENBOOM E, HEIDER A, SCHRÖDER A. Investigation of the propeller slipstream with particle image velocimetry[J]. Journal of Aircraft, 2009, 46(2):442-449.
[12] XU H Y, YE Z, SHI A. Numerical study of prepoller slipstream based on unstructured overset grids[J]. Journal of Aircraft, 2012, 49(2):384-389.
[13] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):849-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):849-852(in Chinese).
[14] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[15] 乔宇航, 马东立, 李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报, 2015, 30(6):1366-1373. QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power, 2015, 30(6):1366-1373(in Chinese).
[16] 杨帆,杨永. 短舱及离散精度对螺旋桨桨叶载荷分布的影响[J]. 航空计算技术, 2012, 42(2):24-26. YANG F, YANG Y. Influence of nacelle and discrete precision on propeller blade load distribution[J]. Aeronautical Computing Technique, 2012, 42(2):24-26(in Chinese).
[17] 段中喆, 刘沛清, 屈秋林. 某轻载螺旋桨滑流区三维流场特性数值研究[J]. 控制工程, 2012, 19(5):836-840. DUAN Z Z, LIU P Q, QU Q L. Numerical research on 3-D flow field characteristics within the slipstream of a low loaded propeller[J]. Control Engineering of China, 2012, 19(5):836-840(in Chinese).
[18] SHUR M L, SPALART P R, STRELETS M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[19] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41(1):181-202.
[20] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Liu C, Liu Z. Advances in DNS/LES. Louisisiama:Greyden Press, Louisiana Tech University, 1997:137-148.
[21] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[22] 应业炬. 船舶快速性[M]. 北京:人民交通出版社, 2007:405-424. YING Y J. Ship speed and resistance[M]. Beijing:China Communications Press, 2007:405-424(in Chinese). the propeller wake in the transition and far fields[J].Journal of fluid mechanics, 2011, 682(3):5-53
[20]应业炬.船舶快速性[M]. 北京:人民交通出版社, 2007.

Outlines

/