ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical investigation of acoustic radiation from Mach number 1.95 supersonic underexpanded jet
Received date: 2015-11-09
Revised date: 2015-12-25
Online published: 2016-01-11
Supported by
National Natural Science Foundation of China (11302215)
Acoustic radiation from a supersonic underexpanded jet with a designed exit Mach number 1.95 is investigated using large eddy simulation (LES). By comparing the statistical results of the mean flow and the turbulence fluctuation of the jet, we verify the accuracy of the numerical method. We carry out a detailed analysis of the flow characteristic of the supersonic jet flow, and pay particular attention to the interaction between shock-cell and turbulence. According to the correlation between jet dynamic and its acoustic field, the features and generation mechanisms of Mach wave radiation and broad band shock associated noise from the jet are carefully analyzed. Numerical results show the shear layer dynamic evolution and the interaction between shock-cell and turbulence constitute the major noise sources of the supersonic underexpanded jet.
FENG Feng , GUO Li , WANG Qiang . Numerical investigation of acoustic radiation from Mach number 1.95 supersonic underexpanded jet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(11) : 3273 -3283 . DOI: 10.7527/S1000-6893.2015.0365
[1] TAM C K W. Supersonic jet noise[J]. Annual Review of Fluid Mechanics, 1995, 27:17-43.
[2] TAM C K W, CHEN P, SEINER J M. Relationship between instability waves and noise of high-speed jets[J]. AIAA Journal, 1992, 30(7):1747-1752.
[3] TAM C K W, CHEN P. Turbulent mixing noise from supersonic jets[J]. AIAA Journal, 1994, 32(9):1774-1780.
[4] TAM C K W. Mach wave radiation from high-speed jets:AIAA-2009-0013[R]. Reston:AIAA, 2009.
[5] HARPER-BOURNE M, FISHER M J. The noise from shock waves in supersonic jets[C]//Agard Conference on Noise Mechanisms. Brussels:Agard Conference Proceedings, 1973:1-11.
[6] TAM C K W, TANNA H K. Shock associated noise of supersonic jets from convergent-divergent nozzles[J]. Journal of Sound and Vibration, 1982, 81(3):337-358.
[7] TAM C K W, JACKSON J A, SEINER J M. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets[J]. Journal of Fluid Mechanics, 1985, 153:123-149.
[8] TAM C K W. Stochastic model theory of broadband shock associated noise from supersonic jets[J]. Journal of Sound and Vibration, 1987, 116(2):265-302.
[9] TAM C K W. Broadband shock-associated noise of moderately imperfectly expanded supersonic jets[J]. Journal of Sound and Vibration, 1990, 140(1):55-71.
[10] SUZUKI T, LELE S K. Shock leakage through an unsteady vortex-laden mixing layer:application to jet screech[J]. Journal of Fluid Mechanics, 2003, 490:139-167.
[11] BERLAND J, BOGEY C, BAILLY C. Numerical study of screech generation in a planar supersonic jet[J]. Physics of Fluids, 2007, 19(7):491-498.
[12] COLONIUS T, LELE S K. Computational aeroacoustics:progress on nonlinear problems of sound generation[J]. Progress in Aerospace Sciences, 2004, 40(6):345-416.
[13] MANKBADI R R, HAYDER M E, POVINELLI L A. Structure of supersonic jet flow and its radiated sound[J]. AIAA Journal, 1994, 32(5):897-906.
[14] MORRIS P J, LONG L N, SCHEIDEGGER T E, et al. Simulation of supersonic jet noise[J]. International Journal of Aeroacoustics, 2002, 1(1):17-41.
[15] SHUR M L, SPALART P R, STRELETS M K,et al. Further steps in LES-based noise prediction for complex jets:AIAA-2006-0485[R]. Reston:AIAA, 2006.
[16] SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets[C]//Computational Aeroacoustics:From Acoustic Sources Modeling to Far-field Radiated Noise Prediction. Chamonix:European Mechanics Society, 2003:449.
[17] BODONY D J, RYU J, LELE S K. Investigating broadband shock-associated noise of axisymmetric jets using large-eddy simulation:AIAA-2006-2495[R]. Reston:AIAA, 2006.
[18] LO S C, BLAISDELL G A, LYRINTZIS A S. Numerical investigation of 3-D supersonic jet flows using large eddy simulation:AIAA-2011-1155[R]. Reston:AIAA, 2011.
[19] NONOMURA T, FUJII K. Over-expansion effects on Mach 3.0 supersonic jet acoustics:AIAA-2008-2836[R]. Reston:AIAA, 2008.
[20] NONOMURA T, FUJII K. Mach number and temperature effects on Mach wave emission from supersonic jets:AIAA-2008-6587[R]. Reston:AIAA, 2008.
[21] de CACQUERAY N, BOGEY C, BAILLY C. Investigation of a high-Mach-number overexpanded jet using large-eddy simulation[J]. AIAA Journal, 2011, 49(10):2171-2182.
[22] TAM C K W. Computational aeroacoustics:issues and methods[J]. AIAA Journal, 1995, 33(10):1788-1796.
[23] BERLAND J, BOGEY C, BAILLY C. Optimized explicit schemes:matching and boundary schemes and 4th-order Runge-Kutta algorithm:AIAA-2004-2814[R]. Reston:AIAA, 2004.
[24] BOGEY C, de CACQUERAY N, BAILLY C. A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations[J]. Journal of Computational Physics, 2009, 228(5):1447-1465.
[25] BOGEY C, BAILLY C, JUVÉ D. Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible LES[J]. Theoretical and Computational Fluid Dynamics, 2003, 16(4):273-297.
[26] NORUM T D, SEINER J M. Measurements of mean static pressure and far-field acoustics of shock-containing supersonic jets:NASA TM-84521[R]. Washington, D.C.:NASA Scientific and Technical Information, 1982.
[27] BODONY D J, LELE S K. Review of the current status of jet noise predictions using large-eddy simulation:AIAA-2006-486[R]. Reston:AIAA, 2006.
/
〈 | 〉 |