Fluid Mechanics and Flight Mechanics

An efficient mesh deformation method based on radial basis functions and peak-selection method

  • WEI Qi ,
  • LI Chunna ,
  • GU Liangxian ,
  • GONG Chunlin
Expand
  • School of Astronautics, Northwestern Polytechnical University, Xi'an 710012, China

Received date: 2015-09-13

  Revised date: 2015-12-11

  Online published: 2015-12-28

Supported by

The Central Universities Free Exploration Projects in 2015 (3102015ZY007); Basic Research Foundation of Northwestern Polytechnical University(JC20120215)

Abstract

The mesh deformation based on radial basis functions (RBFs) have many advantages, thus it has been widely employed in aerodynamic optimization design as well as other fields. For large-scale meshes or complex configurations, the expense of deforming by RBFs is unbearable. Reducing the number of support points that build the RBFs model provides an alternative to improve the efficiency of the deformation. Thus, the peak-selection method is developed to efficiently select support points. The method can select multiple peak points from boundary nodes to update the support point set through analyzing the interpolation error of boundary nodes at each iterative step. Therefore, the peak-selection method can significantly reduce the iterative steps and greatly improve the efficiency of selecting support points set. Finally, an RBFs interpolation model is established using the specified support point set to calculate the displacement of the volume mesh points. The deformation of a three element airfoil validates the developed method under good deformation conditions. Further, the DLR-F6 geometry with ten million mesh points under rigid motion and flexible deformation is deformed. The results demonstrate that the deforming and the selecting efficiencies of the peak-selection method are improved by 13 times and 31 times compared with the conventional greedy method on the premise of a good quality when setting relative error as 5.0×10-7.

Cite this article

WEI Qi , LI Chunna , GU Liangxian , GONG Chunlin . An efficient mesh deformation method based on radial basis functions and peak-selection method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(7) : 2156 -2169 . DOI: 10.7527/S1000-6893.2015.0343

References

[1] VINCENT P, SIVA K N. Efficient RBF mesh deformation within an adjoint-based aerodynamic shape optimization framework:AIAA-2012-0059[R]. Reston:AIAA, 2012.
[2] 张伟伟,高传强,叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报,2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress onmesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese).
[3] GAITONDE A L, FIDDES S P. A moving mesh system for the calculation of unsteady flows:AIAA-1993-0641[R]. Reston:AIAA, 1993.
[4] ALLEN C B. An algebraic grid motion technique for large deformations[J]. Journal of Aerospace Engineering, 2002, 216(1):51-58.
[5] LI J, HUANG S Z, JIANG S J, et al. Unsteady viscous flow simulations by a fully implicit method with deforming grid:AIAA-2005-1221[R]. Reston:AIAA, 2005.
[6] HUO S H, WANG F S, YAN W Z, et al. Layered elastic solid method for the generation of unstructure dynamic mesh[J]. Finite Elements in Analysis and Design, 2010, 46(10):949-955.
[7] 刘君, 白晓征, 郭正. 非结构动网格计算方法及其在包含运动界面的流场模拟中的应用[M]. 长沙:国防科学技术大学出版社, 2009:81-94. LIU J, BAI X Z, GUO Z. Unstructured grid moving method and its application for the simulation of flow with moving interface[M]. Changsha:National University of Defence Technology Press, 2009:81-94(in Chinese).
[8] 霍世慧, 王富生, 岳珠峰. 弹簧近似法在二维非结构动网格生成技术中的应用[J]. 振动与冲击, 2011, 20(10):177-182. HUO S H, WANG F S, YUE Z F. Spring analogy method for generating of 2D unstructured dynamic meshes[J]. Journal of Vibration and Shock, 2011, 20(10):177-182(in Chinese).
[9] 张军, 谭俊杰, 褚江, 等. 一种新的非结构动网格生成方法[J]. 南京航空航天大学学报, 2007, 39(5):633-636. ZHANG J, TAN J J, CHU J, et al. New method for generating unstructured moving grids[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(5):633-636(in Chinese).
[10] 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7):1389-1395. ZHOU X, LI S X, CHEN B. Spring-Interpolation approach for generating unstructured dynamic meshes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1389-1395(in Chinese).
[11] LIU X, QIN N, XIA H. Fast dynamic grid deformation based on delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[12] 伍贻兆, 田书玲, 夏键. 基于非结构动网格的非定常数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese).
[13] BANITA J T. Unsteady euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[14] TEZDUYAR T E. Stabilized finite element formulations for incompressible flow computations[J]. Advances in Applied Mechanics, 1992, 28(1):1-44.
[15] BOER A, SCHOOT M S, Faculty H B. Mesh deformation basedon radial basis function interpolation[J]. Computers and Structures, 2007, 85(11):784-795.
[16] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(7):6231-6249.
[17] RENDALL T C S, ALLEN C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8):2810-2820.
[18] WANG G, HARIS H M, YE Z Y. An improved point selection method for hybrid unstructured mesh deformation using radial basis functions:AIAA-2013-3076[R]. Reston:AIAA, 2013.
[19] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):783-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788(in Chinese).
[20] 谢亮, 徐敏, 张斌, 等. 基于径向基函数的高效网格变形算法研究[J]. 振动与冲击, 2013, 32(10):141-145. XIE L, XU M, ZHANG B, et al. Space points reduction in grid deforming method based on radial basis functions[J]. Journal of Vibration and Shock, 2013, 32(10):141-145(in Chinese).
[21] 刘中玉, 张明峰, 聂雪媛, 等. 一种基于径向基函数的两步法网格变形策略[J]. 力学学报, 2015, 47(3):534-538. LIU Z Y, ZHANG M F, NIE X Y, et al. A two-step mesh deformation strategy based on radial basis function[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):534-538(in Chinese).
[22] 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3):727-735. SUN Y, DENG X G, WANG G X, et al. An improvement on Delaunay graph mapping dynamic grid method based onradial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):727-735(in Chinese).
[23] STEIN E M, WEISS G. Introduction to fourier analysis on euclidean spaces[M]. Chicago:Princeton University Press, 1971.
[24] WU Z M. Multivariate compactly supported positive definite radial functions[J]. Advance in Computational Mathematics, 1995, 4:283-292.
[25] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1):389-396.
[26] 林言中, 陈兵, 徐旭. 径向基函数插值方法在动网格技术中的应用[J]. 计算物理, 2012, 29(2):191-197. LIN Y Z, CHEN B, XU X. Radial basis function interpolation in moving mesh technique[J]. Chinese Journal of Computational Physics, 2012, 29(2):191-197(in Chinese).

Outlines

/