ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Theory and method of determination life by life factor
Received date: 2015-09-30
Revised date: 2015-12-06
Online published: 2015-12-22
This paper, through research on damage value of fatigue load spectrum, finds out that the fatigue life of metallic material is linear with the damage value of fatigue test load spectrum, namely, the fatigue life of metallic material is linear with the weight of fatigue test load spectrum. Life factor can be deduced from the regularities, and the fatigue test time of full-scale component can be reduced from life factor. From what is displayed in the life factor of existing fatigue test data research, when adding damage value on the basis of average spectrum(fatigue damage value is 50%), 58.3% damage spectrum can reduce 11% of the full-scale component fatigue test time, 75% damage spectrum can reduce 36% and 91.5% damage spectrum can reduce 50%. It comes to the conclusion in this paper as follows:for the purpose of reducing full-scale fatigue test time, load spectrum enhancement is to be employed in full-scale fatigue test, which renders the life in load spectrum enhancement. Then the life factor of sample is used to revert it to the average life under average load spectrum. This average life is then divided by the standard fatigue dispersion coefficient, which renders service life. This method reduces the fatigue test time without violating the standard fatigue dispersion values, making the determination of aircraft life economical and reliable.
Key words: fatigue life; fatigue damage; life factor; average spectrum; heavy spectrum
ZHANG Fuze . Theory and method of determination life by life factor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 404 -410 . DOI: 10.7527/S1000-6893.2015.0330
[1] Jointly apply specification guide of U.S.:JSSG-2006[S]. Beijing:Ministry of National Defense, 2006.
[2] 军用飞机强度规范:GJB67.6A-2008[S]. 北京:国防技术委员会, 2008. Military airplane structural strength specification:GJB67.6A-2008[S]. Beijing:Defense Technology Commission, 2008(in Chinese).
[3] 张福泽. 使用载荷下的重谱能降低寿命不能降低疲劳分散系数[J]. 航空学报, 2013, 34(8):1892-1896. ZHANG F Z. Heavy spectra under operational loads may reduce life, but not fatigue scatter factors[J]. Acta Aeronoutica et Astronautica Sinica, 2013, 34(8):1892-1896(in Chinese).
[4] 军用飞机强度规范:GJB67.6-85[S]. 北京:国防技术委员会, 1986. Military airplane structural strength specification:GJB67.6-85[S]. Beijing:Defense Technology Commission, 1986(in Chinese).
[5] 高镇同. 飞机疲劳分散系数, BH-B884[R]. 北京:北京航空学院, 1982. GAO Z T. Fatigue scatter factors of aircraft, BH-B884[R]. Beijing:Beijing University of Aeronautical and Astronautics, 1982(in Chinese).
[6] 张福泽. 裂纹形成寿命类比计算法[J]. 航空学报, 1982,3(2):51-60. ZHANG F Z. An analogy method for crack initiation life prediction[J]. Acta Aeronoutica et Astronautica Sinica, 1982, 3(2):51-60(in Chinese).
[7] 张福泽. 裂纹扩展寿命类比计算法[J]. 航空学报, 1985, 6(2):194-200. ZHANG F Z. An analogy method for propagation life prediction[J]. Acta Aeronoutica et Astronautica Sinica, 1985, 6(2):194-200(in Chinese).
[8] 刘文珽, 王智. 单机寿命监控技术指南[M]. 北京:国防工业出版社, 2010. LIU W T, WANG Z. Monitoring techniques guide of aircraft life[M]. Beijing:Chinese National Defense Industry press, 2010(in Chinese).
[9] 张福泽. 飞机载荷谱编制新方法[J]. 航空学报, 1998, 19(5):518-524. ZHANG F Z. New method of drawing up aircraft load spectrum[J]. Acta Aeronoutica et Astronautica Sinica, 1998, 19(5):518-524(in Chinese).
/
〈 | 〉 |