ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Turbulence mixing length for compressible free shear flows
Received date: 2015-08-28
Revised date: 2015-11-04
Online published: 2015-12-04
Supported by
National Key Laboratory of Aircraft Engine Foundation of China (9140C410505150C41002)
Seizing compressible flow variable density characteristics,a three-dimensional von Karman mixing length scale based on the effective vorticity has been constructed. This paper adopts a single-equation turbulence KDO (Kinetic Dependent Cnly) model which depends only on the turbulent kinetic energy equation, and introduces a new structure which replaces the old mixing length scale to obtain CKDO model. Then in order to verify its ability to describe compressible free shear turbulence, we select the compressible mixing layer of no wall bondage, large density gradient and strong compressibility effects as an example, whose convective Mach number is 0.8. The results show that KDO model has good control and simulation ability of mixing flow velocity distribution; compared with the original model and other compressible correction models, the velocity distribution, primary Reynolds shear stress and mixing layer thickness obtained with compressible correction model CKDO have a better fit with the experimental value. The results illustrate that the new mixing length has a good ability of characterization for compressible free shear turbulent mixing layer.
XU Jinglei , SONG Youfu , ZHANG Yang , BAI Junqiang . Turbulence mixing length for compressible free shear flows[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1841 -1850 . DOI: 10.7527/S1000-6893.2015.0300
[1] BIRCH S F, EGGERS J M. A critical review of the experimental data for developed free turbulent shear layers:NASA SP-321[R]. Washington, D.C.:NASA, 1972.
[2] GRUBER M R, MESSERSMITH N L, DUTTON J C. Three-dimensional velocity field in a compressible mixing layer[J]. AIAA Journal, 1993, 31(11):2061-2067.
[3] WILCOX D C. Progress in hypersonic turbulence modeling:AIAA-1991-1785[R]. Reston:AIAA, 1991.
[4] WILCOX D C. A complete model of turbulence revisited:AIAA-1984-0176[R]. Reston:AIAA, 1984.
[5] WILCOX D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11):2639-2646.
[6] WILCOX D C. Turbulence modeling for CFD[M]. California:DCW Industries, Inc., 1998:180-183.
[7] MENTER F R. Improved two-equation k-omega turbulence models for aerodynamic flows:NASA TM-1992-103975[R]. Washington, D. C.:NASA, 1992.
[8] SARKAR S, ERLEBACHER G, HUSSAINI M Y, et al. The analysis and modeling of dilatational terms in compressible turbulence[J]. Journal of Fluid Mechanics, 1991, 227(3):473-493.
[9] XU J L, ZHANG Y, BAI J Q. One-equation turbulence model based on extended Bradshaw assumption[J]. AIAA Journal, 2015, 53(6):1433-1441.
[10] 白俊强, 张扬, 徐晶磊, 等. 新型单方程湍流模型构造及其应用[J]. 航空学报, 2014, 35(7):1804-1814. BAI J Q, ZHANG Y, XU J L, et al. Construction and application of a new one-equation turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1804-1814(in Chinese).
[11] 徐晶磊, 张扬, 白俊强, 等. 一个方程驱动转捩的湍动能单方程模型[C]//中国力学大会文集. 北京:中国力学学会发, 2013:142-149. XU J L, ZHANG Y, BAI J Q, et al. A transition model based only on turbulence kinetic equation[C]//The Chinese Society of Theoretical and Applied Mechanics. Beijing:Chinese Society of Theoretical and Applied Mechanics, 2013:142-149(in Chinese).
[12] 张扬, 徐晶磊, 白俊强, 等. 一种基于湍动能方程的转捩判定方法[J]. 力学学报, 2014, 46(1):160-164. ZHANG Y, XU J L, BAI J Q, et al. A transition prediction method based on turbulence kinetic equation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):160-164(in Chinese).
[13] BRADSHAW P, FERRISS D, ATWELL N. Calculation of boundary layer development using the turbulent energy equation[J]. Journal of Fluid Mechanics, 1967, 28(3):593-616.
[14] HARSHA P T, LEE S C. Correlation between turbulent shear stress and turbulent kinetic energy[J]. AIAA Journal, 1970, 8(8):1508-1510.
[15] 文晓庆, 柳阳威, 方乐, 等. 提高k-ω SST模型对翼型失速特性的模拟能力[J]. 北京航空航天大学学报, 2013, 31(8):1127-1132. WEN X Q, LIU Y W, FANG L, et al. Improving the capability of k-ω SST turubulence model for predicting stall characteristics of airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 31(8):1127-1132(in Chinese).
[16] 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12):2192-2201. LIU J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2192-2201(in Chinese).
[17] 徐晶磊, 阎超. 一个一方程Scale-Adaptive Simulation模型的构造[J]. 气体物理, 2010, 5(1):79-82. XU J L, YAN C. A one-equation scale-adaptive simulation model[J]. Physics of Gases, 2010, 5(1):79-82(in Chinese).
[18] WILCOX D C. Turbulence modeling for CFD[M]. California:DCW Industries, Inc., 2006:243-261.
[19] GRUBER M R, MESSERSMITH N L, DUTTON J C. Three-dimensional velocity measurements in a turbulent compressible mixing layer[C]//28th Joint Propulsion Conference and Exhibit. Nashville:AIAA, SAE, ASME, and ASEE, 1992.
[20] GOEBEL S G, DUTTON J C, KRIER H, et al. Mean and turbulent velocity measurements of supersonic mixing layers[J]. Experiments in Fluids, 1990, 8(5):263-272.
[21] POPE S B. Turbulent flows[M]. Cambridge:Cambridge University Press, 2000:116-118.
[22] SETTLES G S, DODSON L J. Hypersonic turbulent boundary-layer and free shear database:NASA CR-1993-177610[R]. Washington, D.C.:NASA, 1993.
/
〈 |
|
〉 |