Electronics and Control

Fault estimation for nonlinear dynamical systems based on unknown input observer

  • HU Zhenggao ,
  • ZHAO Guorong ,
  • ZHOU Dawang
Expand
  • 1. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. Bengbu Naval Petty Officer Academy, Bengbu 233012, China

Received date: 2014-11-13

  Revised date: 2015-03-06

  Online published: 2015-12-08

Supported by

National Natural Science Foundation of China (61473306)

Abstract

Actuator fault estimation for a class of nonlinear dynamical systems with disturbance is considered, and an unknown input observer is proposed to fulfill fault estimation. Firstly, the original nonlinear dynamical system is turned into appropriate form by the coordinate transformations. Secondly, an H output feedback controller and an unknown input observer are designed by the linear matrix inequalities and the Lyapunov function respectively. Based on that, the actuator fault estimation for the system is achieved. Finally, simulation for manipulators is displayed to illustrate the effectiveness of the proposed method. Compared with the previous methods, the proposed method does not require that faults should be derivable and the upper bound of faults or disturbance is not necessarily required. The proposed method can be used to fulfill the actuator fault estimation for nonlinear dynamical systems in engineering practice easily.

Cite this article

HU Zhenggao , ZHAO Guorong , ZHOU Dawang . Fault estimation for nonlinear dynamical systems based on unknown input observer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(11) : 3687 -3697 . DOI: 10.7527/S1000-6893.2015.0067

References

[1] Zhou D H, Shi J T, He X. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2):161-171(in Chinese).周东华,史建涛,何潇.动态系统间歇故障诊断技术综述[J].自动化学报, 2014, 40(2):161-171.
[2] Zhu F, Cen F. Full-order observer-based actuator fault detection and reduced-order observer-based fault reconstruction for a class of uncertain nonlinear systems[J]. Journal of Process Control, 2010, 20(10):1141-1149.
[3] Zong Q, Zeng F, Liu W, et al. Sliding mode observer-based fault detection of distributed networked control systems with time delay[J]. Circuits, Systems & Signal Processing, 2012, 31(1):203-222.
[4] Yoo S J. Actuator fault detection and adaptive accommodation control of flexible-joint robots[J]. IET Control Theory & Applications, 2012, 6(10):1497-1507.
[5] Chen J, Patton R J. Robust model-based fault diagnosis for dynamic systems[M]. Boston, MA:Kluwer, 1999.
[6] Zhou D H, Ye Y Z. Modern fault diagnosis and fault tolerant control[M]. Beijing:Tsinghua University Press, 2000(in Chinese).周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社, 2000.
[7] Ding S X. Model-based fault diagnosis techniques[M]. Berlin:Springer, 2008.
[8] Zhang K, Jiang B. Modified adaptive fault diagnosis method and its application to flight control systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1271-1276(in Chinese).张柯,姜斌.一种改进的自适应故障诊断设计方法及其在飞控系统中的应用[J].航空学报, 2009, 30(7):1271-1276.
[9] Ducard G, Geering H P. Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1):225-237.
[10] Shen Q, Jiang B, Cocquempot V. Fault diagnosis and estimation for near-space hypersonic vehicle with sensor faults[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2011:302-313.
[11] Chen X Q, Wang F, Zhang Y C, et al. Application of effectiveness factors to integrated FDD and FTC of satellite attitude control systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):476-483(in Chinese).陈雪芹,王峰,张迎春,等.有效性因子在卫星姿控系统集成故障诊断与容错控制中的应用[J].航空学报, 2009, 30(3):476-483.
[12] Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3):636-653.
[13] He J, Zhang C. Fault reconstruction based on sliding mode observer for nonlinear systems[J]. Mathematical Problems in Engineering, 2012, 2012:1-22.
[14] Edwards C, Spurgeon S K, Patton R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4):541-553.
[15] Carl Raoufi R, Marquez H J, Zinober A S I. Sliding mode observers for uncertain nonlinear Lipschitz systems with fault estimation synthesis[J]. International Journal of Robust and Nonlinear Control, 2010, 20(16):1785-1801.
[16] Dhahri S, Sellami A, Hmida F B. Robust H sliding mode observer design for fault estimation in a class of uncertain nonlinear systems with LMI optimization approach[J]. International Journal of Control, Automation, and Systems, 2012, 10(5):1032-1041.
[17] Veluvolu K C, Kim M Y, Lee D. Nonlinear sliding mode high-gain observers for fault estimation[J]. International Journal of Systems Science, 2011, 42(7):1065-1074.
[18] Zhang J, Swain A K, Nguang S K. Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems[J]. Asian Journal of Control, 2015, 17(4):1296-1309.
[19] Han X, Fridman E, Spurgeon S K. Sampled-data sliding mode observer for robust fault reconstruction:A time-delay approach[J]. Journal of the Franklin Institute, 2014, 351(4):2125-2142.
[20] Jiang B, Staroswiecki M, Cocquempot V. Fault accommodation for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2006, 51(9):1578-1583.
[21] Zhang K, Jiang B, Cocquempot V. Fast adaptive fault estimation and accommodation for nonlinear time-varying delay systems[J]. Asian Journal of Control, 2009, 11(6):643-652.
[22] Qiu J, Ren M, Niu Y, et al. Fault estimation for nonlinear dynamic systems[J]. Circuits, Systems & Signal Processing, 2012, 31(2):555-564.
[23] Qiu A B, Ji H G, Gu J P. Optimal integrated design of time-varying fault estimation and accommodation for nonuniformly sampled data systems[J]. Acta Automatica Sinica, 2014, 40(7):1493-1504(in Chinese).邱爱兵,吉虹钢,顾菊平.非均匀采样数据系统时变故障估计与调节最优集成设计[J].自动化学报, 2014, 40(7):1493-1504.
[24] Veluvolu K C, Defoort M, Soh Y C. High-gain observer with sliding mode for nonlinear state estimation and fault reconstruction[J]. Journal of the Franklin Institute, 2014, 351(4):1995-2014.
[25] Zhu F, Yang J. Fault detection and isolation design for uncertain nonlinear systems based on full-order, reduced-order and high-order high-gain sliding-mode observers[J]. International Journal of Control, 2013, 86(10):1800-1812.
[26] Wang Z, Shen Y, Zhang X. Actuator fault estimation for a class of nonlinear descriptor systems[J]. International Journal of Systems Science, 2014, 45(3):487-496.
[27] Chen W, Chen W T, Saif M, et al. Simultaneous fault isolation and estimation of Lithium-Ion batteries via synthesized design of Luenberger and learning observers[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1):290-298.
[28] Zhong M, Zhou D, Ding S X. On designing H fault detection filter for linear discrete time-varying systems[J]. IEEE Transactions on Automatic Control, 2010, 55(7):1689-1695.
[29] Qi X H, Wang J C, Shan G L. Fault estimation method based on an ESO iteration learning algorithm[J]. Control and Decision, 2015, 30(3):546-550(in Chinese).齐晓慧,王俭臣,单甘霖.基于ESO迭代学习算法的故障估计[J].控制与决策, 2015, 30(3):546-550.
[30] Park T G, Lee K S. Process fault isolation for linear systems with unknown inputs[J]. IET Control Theory & Applications, 2004, 151(6):720-726.
[31] Park T G. Estimation strategies for fault isolation of linear systems with disturbances[J]. IET Control Theory & Applications, 2010, 4(12):2781-2792.
[32] Hou M, Muller P C. Design of observers for linear systems with unknown inputs[J]. IEEE Transactions on Automatic Control, 1992, 37(6):871-875.
[33] Edwards C, Fridman L, Levant A. Sliding mode control and observation[M]. Heidelberg:Birkhäuser, 2014:159-161.
[34] Yan X G, Edwards C. Nonlinear robust fault reconstruction and estimation using a sliding mode observer[J]. Automatica, 2007, 43(9):1605-1614.

Outlines

/