ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Distributed control allocation for cellular space robots in takeover control
Received date: 2015-09-08
Revised date: 2015-09-25
Online published: 2015-11-26
Supported by
National Natural Science Foundation of China (11272256)
Spacecraft takeover control provides a new idea for on-orbit service to extend the lifetime of spacecraft. In this paper, cellular space robots (CSR) are implemented in spacecraft takeover control. On the foundation of the takeover control dynamic model for CSRs, a distributed control allocation algorithm based on consensus-based bundle algorithm (CBBA) is proposed. This market-based algorithm allows the distributed and asynchronous allocation for CSRs. The profit of the CSR depends on the capability matching with the task, energy level and output limits. The consensus allocation is achieved by auction procedure and consensus procedure. As a comparison, a centralized algorithm called null-space intersection is considered. Monte Carlo simulations indicate that the algorithm proposed in this paper can achieve energy consumption balance of the CSRs while allocating the control tasks.
CHANG Haitao , HUANG Panfeng , WANG Ming , MENG Zhongjie . Distributed control allocation for cellular space robots in takeover control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2864 -2873 . DOI: 10.7527/S1000-6893.2015.0270
[1] BENEDICT B L. Rationale for need of in-orbit servicing capabilities for GEO spacecraft: AIAA-2013-5444[R]. Reston: AIAA, 2013.
[2] TANAKA H, YAMAMOTO N, YAIRI T, et al. Reconfigurable cellular satellites maintained by space robots[J]. Journal of Robotics and Mechatronics, 2006, 18(3): 356-364.
[3] TANAKA H, YAMAMOTO N, YAIRI T, et al. Precise assembly by autonomous space robot using skill acquisition learning[C]//Proceedings of The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Munich: European Space Agency, 2005, 609-616.
[4] JAEGER T, MIRCZAK W. Satlets-the building blocks of future satellites-and which mold do you use: AIAA-2013-5485[R]. Reston: AIAA, 2013.
[5] JOHNSON L K, HOLLMAN J, MCCLELLAN J, et al. Utilizing CubeSat architecture and innovative low-complexity devices to repurpose decommissioned apertures for RF communications: AIAA-2013-5487[R]. Reston: AIAA, 2013.
[6] WEISE J, BRIEB K, ADOMEIT A, et al. An intelligent building blocks concept for on-orbit-satellite servicing[C]//International Symposium on Artificial Intelligence, Robotics and Automation in Space. Turin: European Space Agency, 2012.
[7] GOELLER M, OBERLAENDER J, UHL K, et al. Modular robots for on-orbit satellite servicing[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ: IEEE Press, 2012: 2018-2023.
[8] 温卓漫, 王延杰, 初广丽, 等. 空间站机械臂位姿测量中合作靶标的快速识别[J]. 航空学报, 2015, 36(4): 1330-1338. WEN Z M, WANG Y J, CHU G L, et al. Fast recognition of cooperative target used for position and orientation measurement of space station's robot arm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1330-1338 (in Chinese).
[9] 王明, 黄攀峰, 孟中杰, 等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9): 3165-3175. WANG M, HUANG P F, MENG Z J, et al. Attitude takeover control after capture of a target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3165-3175 (in Chinese).
[10] BORDIGNON K A, DURHAM W C. Null-space augmented solutions to constrained control allocation problems: AIAA-1995-3209-CP[R]. Reston: AIAA, 1995.
[11] BORDIGNON K A. Constrained control allocation for systems with redundant control effectors[D]. Virginia: Virginia Polytechnic Institute and State University, 1996: 101-117.
[12] 张世杰, 赵亚飞, 陈闽, 等. 过驱动轮控卫星的动态控制分配方法[J]. 航空学报, 2011, 32(7): 1260-1268. ZHANG S J, ZHAO Y F, CHEN M, et al. Dynamic control allocation for overactuated satellite with redundant reaction wheels[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1260-1268 (in Chinese).
[13] DURHAM W C. Constrained control allocation[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 717-725.
[14] DURHAM W C. Constrained control allocation: Three-moment problem[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(2): 330-336.
[15] HARKEGARD O. Dynamic control allocation using constrained quadratic programming[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1028-1034.
[16] KORSAH G A, STENTZ A, DIAS M B. A comprehensive taxonomy for multi-robot task allocation[J]. The International Journal of Robotics Research, 2013, 32(12): 1495-1512.
[17] GERKEY B P, MATARIC M J. A formal analysis and taxonomy of task allocation in multi-robot systems[J]. The International Journal of Robotics Research, 2004, 23(9): 939-954.
[18] CHOI H L, BRUNET L, HOW J P. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics, 2009, 25(4): 912-926.
[19] REDDING J, UNDURTI A, CHOI H L, et al. An intelligent cooperative control architecture[C]//American Control Conference. Piscataway, NJ: IEEE Press, 2010: 57-62.
[20] 柳林, 季秀才, 郑志强. 基于市场法及能力分类的多机器人任务分配方法[J]. 机器人, 2006, 28(3): 337-343. LIU L, JI X C, ZHENG Z Q. Multi-robot task allocation based on market and capability classification[J]. Robot, 2006, 28(3): 337-343 (in Chinese).
[21] 张兵, 吴宏鑫. 单向执行器系统配置的完整性[J]. 自动化学报, 2000, 26(3): 392-396. ZHANG B, WU H X. Complete configuration of unidirectional actuator system[J]. Acta Automatica Sinica, 2000, 26(3): 392-396 (in Chinese).
[22] LEENA S, MATTHEW F, SAGAR B, et al. On the phoenix ADCS-M3D architecture: AIAA-2013-5535[R]. Reston: AIAA, 2013.
/
〈 | 〉 |