Fluid Mechanics and Flight Mechanics

Aerodynamic shape optimization design of civil jet wing-body-tail configuration

  • CHEN Song ,
  • BAI Junqiang ,
  • SHI Yayun ,
  • QIAO Lei
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-09-18

  Revised date: 2015-03-04

  Online published: 2015-10-27

Supported by

National Basic Research Program of China (2014CB744804)

Abstract

The approach of applying discrete adjoint technique-based aerodynamic shape optimization on civil jet wing-body-tail configuration has been presented, in which free-form deform (FFD) technique has been used to rotate the tail for trimming the whole aircraft. Reynolds-averaged Navier-Stokes (RANS) equations solver has been used for simulation together with a discrete adjoint solver for computing the gradients of the objective function with respect to the design variables, which makes the computational cost almost independent from the number of design variables. FFD technique has been used for all-at-once parameterization of the wing shape and the tail so that the wing shape and the tail rotation could be controlled simultaneously, which could trim the aircraft as a moment constraint while optimizing the wing and avoid the trim drag when optimizing the wing only. Sequential quadratic programming has been used for gradient-based optimization to handle large number of constraints. Drag prediction workshop IV common research model has been used as the baseline configuration, on which design optimization for drag reduction with and without the trimming constraint has been researched. The results of the optimization cases show that the shock wave on the wing could be fully eliminated after the optimization and the drag has been reduced. In the case with trimming constraint, the pitching moment is trimmed by a rotation angle of the tail by the optimizer.

Cite this article

CHEN Song , BAI Junqiang , SHI Yayun , QIAO Lei . Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3195 -3207 . DOI: 10.7527/S1000-6893.2015.0066

References

[1] Wang X P. Application of genetic algorithm in aerodynamic shape optimization design[D]. Xi'an:Northwestern Polytechnical University, 2000 (in Chinese). 王晓鹏. 遗传算法及其在气动优化设计中的应用研究[D]. 西安: 西北工业大学, 2000.
[2] Sun M J, Zhan H. Synthesis airfoil optimization by particle swarm optimization based on global inforation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2166-2173 (in Chinese). 孙美建, 詹浩. 基于全局信息的粒子群算法翼型综合优化设计[J]. 航空学报, 2010, 31(11): 2166-2173.
[3] Li D, Xia L. Application of improved particle swarm optimization algorithm to aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1809-1816 (in Chinese). 李丁, 夏露. 改进的粒子群优化算法在气动设计中的应用[J]. 航空学报, 2012, 33(10): 1809-1816.
[4] Xiong J T, Qiao Z D, Yang X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica,2007, 28(2): 281-285 (in Chinese). 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2): 281-285.
[5] Nocedal J, Wright S J. Numerical optimization[M]. New York: Springer, 1999: 526-572.
[6] Jameson A, Pierce N A, Martinelli L. Optimum aerodynamic design using the Navier-Stokes equations, AIAA-1997-0101[R]. Reston: AIAA, 1997.
[7] Jameson A. Optimum aerodynamic design using CFD and control theory, AIAA-1995-1729[R]. Reston: AIAA, 1995.
[8] Reuther J, Jameson A, Farmer J, et al. Aerodynamic shape optimization of complex aircraft configurations via an adjoint method, AIAA-1996-0094[R]. Reston: AIAA, 1996.
[9] Carrier G, Destarac D, Dumont A, et al. Gradient-based aerodynamic optimization with the elsA software, AIAA-2014-0568[R]. Reston: AIAA, 2014.
[10] Martín M, Andrés E, Wildham M, et al. CAD-based aerodynamic shape design optimization with the DLR tau code[C]//27th International Congress of the Aeronautical Sciences, 2010.
[11] Nielsen E J, Diskin B, Yamaleev N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6): 1195-1206.
[12] Palacios F,Economon T. Stanford University unstructured (SU2): Open-source analysis and design technology for turbulent flows, AIAA-2014-0243[R]. Reston: AIAA, 2014.
[13] Zuo Y T, Gao Z H, He J. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2010, 28(5): 509-512 (in Chinese). 左英桃, 高正红, 何俊. 基于 NS 方程和离散共轭方法的气动外形设计[J]. 空气动力学学报, 2010, 28(5): 509-512.
[14] Yang X D, Qiao Z D, Zhu B. Aerodynamic design method based on control theory and Navier-Stokes equations[J]. Acta Aerodynamica Sinica, 2005, 23(1): 46-52 (in Chinese). 杨旭东, 乔志德, 朱兵. 基于控制理论和 NS 方程的气动设计方法研究[J]. 空气动力学学报, 2005, 23(1): 46-52.
[15] Tang Z L. Constrained optimum control theory: application to aerodynamic design[J]. Chinese Journal of Theoretical and Applied Mechnics, 2007, 23(2): 273-277 (in Chinese). 唐智礼. 约束最优控制理论及其在气动优化中的应用[J]. 力学学报, 2007, 23(2): 273-277.
[16] Wu W H, Tao Y, Chen D H. Wing optimization of large airplane by adjoint method[J]. Journal of Aerospace Power, 2011, 26(7): 1583-1589 (in Chinese). 吴文华, 陶洋, 陈德华. 基于伴随算子的气动布局优化技术及其在大飞机机翼减阻中的应用[J]. 航空动力学报, 2011, 26(7): 1583-1589.
[17] Wu W H, Fan Z L, Chen D H. Adjoint based on high precise aerodynamic shape optimization for transonic civil aircraft[J]. Acta Aerodynamica Sinica, 2012, 30(6): 719-724 (in Chinese). 吴文华, 范召林, 陈德华. 基于伴随算子的大飞机气动布局精细优化设计[J]. 空气动力学学报, 2012, 30(6): 719-724.
[18] Sederberg T, Parry S. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. 1986, 86: 151-160.
[19] Palacios F, Alonso J J, Colono M, et al. Adjoint-based method for supersonic aircraft design using equivalent area distribution, AIAA-2012-0269[R]. Reston: AIAA, 2012.
[20] Huang J T, Gao Z H, Bai J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826 (in Chinese). 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826.
[21] Ma X Y,Wu W H,Fan Z L. Free deformation of wing based on NURBS[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(2): 195-197 (in Chinese). 马晓永, 吴文华, 范召林. 基于NURBS的机翼自由变形方法[J]. 四川大学学报: 工程科学版, 2010, 42(2): 195-197.
[22] Spekreijse S P, Prananta B B, Kok J C. A simple, robust and fast algorithm to compute deformations of multi-block structured grids, NLR-TP-2002-105[R]. Amsterdam: National Aerospace Laboratory, 2002.
[23] Barthelemy J F M, Hall L E. Automatic differentiation as a tool in engineering design[J]. Structural Optimization, 1995, 9(2): 76-82.
[24] Hascoet L, Pascual V. The Tapenade automatic differentiation tool: principles, model, and specification[J]. ACM Transactions on Mathematical Software (TOMS), 2013, 39(3): 20.
[25] Saad Y. Iterative methods for sparse linear systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2003.
[26] Heroux M A, Bartlett R A, Howle V E, et al. An overview of the Trilinos project[J]. ACM Transactions on Mathematical Software (TOMS), 2005, 31(3): 397-423.
[27] Chen S, Bai J Q, Sun Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695-705 (in Chinese). 陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动外形优化设计[J]. 航空学报, 2014, 35(3): 695-705.
[28] Yang T H, Bai J Q, Wang D, et al. Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1836-1844 (in Chinese). 杨体浩, 白俊强, 王丹, 等. 考虑发动机干扰的尾吊布局后体气动优化设计[J]. 航空学报, 2014, 35(7): 1836-1844.
[29] Xu J K, Bai J Q, Huang J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920 (in Chinese). 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920.
[30] Vassberg J C, DeHaan M A, Rivers S M, et al. Development of a common research model for applied CFD validation studies, AIAA-2008-6919[R]. Reston: AIAA, 2008.

Outlines

/