Fluid Mechanics and Flight Mechanics

Computational research on aerodynamic characteristics of helicopter main-rotor/tail-rotor/vertical-tail interaction

  • YE Zhou ,
  • XU Guohua ,
  • SHI Yongjie
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-09-26

  Revised date: 2014-11-12

  Online published: 2015-10-13

Supported by

National Natural Science Foundation of China (11302103); Aeronautical Science Foundation of China (20135752055)

Abstract

A computational method based on computational fluid dynamics (CFD) technology is developed for helicopter main-rotor/tail-rotor/vertical-tail interaction analysis. In the present method, Navier-Stokes equations are utilized as the control equations. For the spatial and time discretization, the second-order upwind Roe scheme and implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel) scheme are used respectively, and the B-L (Baldwin-Lomax) model is used as the turbulence model. Moving embedded grid method is applied to exchanging the flowfield information among the grids of main-rotor, tail-rotor and vertical-tail. By the method developed, example calculations on the flowfield of well-known Helishape 7A rotors and Lynx tail rotors are performed, and the validity of the present method is demonstrated by comparing the calculated results with available experimental data. Then, numerical simulations for main-rotor/tail-rotor aerodynamic interference are made. Furthermore, taking vertical tail interaction into consideration, tail-rotor/vertical-tail and main-rotor/tail-rotor/vertical-tail interaction calculations are conducted to investigate the interaction mechanism between main rotor, tail rotor and vertical tail. It is shown that, for different vertical-tail/tail-rotor configurations, a larger blockage area always leads to a greater tail-rotor trust, but a smaller clean trust of vertical tail and tail rotor. In addition, the clean tail-rotor trusts of "push configuration" are always higher than those of the "pull configuration" for different blockage areas. It is also shown that, vertical tail has little influences on main-rotor/tail-rotor interaction in forward flight.

Cite this article

YE Zhou , XU Guohua , SHI Yongjie . Computational research on aerodynamic characteristics of helicopter main-rotor/tail-rotor/vertical-tail interaction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 2874 -2883 . DOI: 10.7527/S1000-6893.2014.0314

References

[1] Leishman J G, Bi N. Aerodynamic interactions between a rotor and a fuselage in forward flight[J]. Journal of the American Helicopter Society, 1990, 35(3): 22-31.
[2] Xu G H, Zhao Q J, Gao Z, et al. Prediction of aerodynamic interactions of helicopter rotor on its fuselage[J]. Chinese Journal of Aeronautics, 2002, 15(1): 12-17.
[3] Renaud T, O'Brien D, Smith M, et al. Evaluation of isolated fuselage and rotor-fuselage interaction using CFD[C]//Proceedings of the 60th AHS Annual Forum. Virginia: American Helicopter Society, 2004.
[4] Tanabe Y, Saito S, Otani I. Validation of computational results of rotor/fuselage interaction analysis using rflow3d code, JAXA-RR-10-001E[R]. Tokyo: Japan Aerospace Exploration Agency, 2010.
[5] Nam H J, Park Y M, Kwon O J. Simulation of unsteady rotor-fuselage aerodynamic interaction using unstructured adaptive meshes[J]. Journal of the American Helicopter Society, 2006, 51(2): 141-149.
[6] Doolan C J, Leclercq D. An anechoic wind tunnel for the investigation of the main-rotor/tail-rotor blade vortex interaction[C]//Proceedings of the 6th Australian Vertiflite Conference on Helicopter Technology. Virginia: American Helicopter Society International, Inc, 2007.
[7] Yang C, Aoyama T, Kondo N, et al. Numerical analysis for main-rotor/tail-rotor interaction of helicopter, JAXA-RR-08-006E[R]. Tokyo: Japan Aerospace Exploration Agency, 2009.
[8] Yin J. Simulation of tail rotor noise reduction and comparison with helinovi wind tunnel test data[C]//Proceedings of the 67th AHS Annual Forum. Virginia: American Helicopter Society, 2011.
[9] Fan F, Xu G H, Shi Y J. Calculations of unsteady aerodynamic interaction between main-rotor and tail-rotor of helicopters based on CFD method[J]. Journal of Aerospace Power, 2014, 29(11): 2633-2642 (in Chinese). 樊枫, 徐国华, 史勇杰. 基于CFD方法的直升机旋翼/尾桨非定常气动干扰计算[J]. 航空动力学报, 2014, 29(11): 2633-2642.
[10] Tan J F, Wang H W, Wu C, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 643-656 (in Chinese). 谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/粘性涡粒子混合法的旋翼/平尾非定常气动干扰研究[J]. 航空学报, 2014, 35(3): 643-656.
[11] Xu H Y, Ye Z Y. Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors[J]. Chinese Journal of Aeronautics, 2011, 24(1): 1-7.
[12] Fan F, Shi Y J, Xu G H. Computational research on aerodynamic and aeroacoustic characteristics of scissors tail-rotor in hover[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2100-2109 (in Chinese). 樊枫, 史勇杰, 徐国华. 剪刀式尾桨悬停状态气动力及噪声特性计算研究[J]. 航空学报, 2013, 34(9): 2100-2109.
[13] Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[14] Luo H, Baum J D, Loehner R. A fast, matrix-free implicit method for computing low Mach number flows on unstructured grids[J]. International Journal of Computational Fluid Dynamics, 2000, 14(2): 133-157.
[15] Fan F, Xu G H, Shi Y J. Computational research on aerodynamic forces of scissors tail-rotor in forward flight based on the N-S equations[J]. Acta Aerodynamica Sinica, 2014, 32(4): 527-533 (in Chinese). 樊枫, 徐国华, 史勇杰. 基于N-S方程的剪刀式尾桨前飞状态气动力计算研究[J]. 空气动力学学报, 2014, 32(4): 527-533.
[16] Chiu I T, Meakin R. On automating domain connectivity for overset grids, NASA-CR-199522[R]. Washington, D.C.: NASA, 1995.
[17] Biava M, Bindolino G, Vigevano L. Single blade computations of helicopter rotors in forward flight, AIAA-2003-52[R]. Reston: AIAA, 2003.
[18] Signor D B, Yamauchi G K, Smith C A, et al. Performance and loads data from an outdoor hover test of a lynx tail rotor, NASA-TM-101057[R]. Washington, D.C.: NASA,1989.
[19] Shi Y J, Xu G H. Research on the influence of flight parameters on helicopter rotor BVI noise characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2520-2528 (in Chinese). 史勇杰, 徐国华. 飞行参数对旋翼桨-涡干扰噪声特性的影响机理研究[J]. 航空学报, 2013, 34(11): 2520-2528.
[20] Kutz B M, Kowarsch U, Keler M, et al. Numerical investigation of helicopter rotors in ground effect, AIAA-2012-2913[R]. Reston: AIAA, 2012.

Outlines

/