ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Efficient aerodynamic optimization method using hierarchical Kriging model combined with gradient
Received date: 2015-07-21
Revised date: 2015-09-20
Online published: 2015-09-25
Supported by
National Natural Science Foundation of China (11272263); the Fundamental Research Funds for the Central Universities (310201401JCQ01017)
It is well-known that the accuracy of Kriging model can be improved when the gradients of objective function are involved in the model. But ordinary methods have some defects. A new method combining gradients with hierarchical Kriging (Gradient Enhanced Hierarchical Kriging, GEHK) model is developed in this paper. New samples are derived by Taylor approximation using gradients and selected steps. Then a low-fidelity Kriging model is built using derived samples. Finally, a high-fidelity model is obtained by adjusting the low-fidelity Kriging with initial samples. Optimization cases of airfoils have proved that the gradient-based GEHK is not sensitive to derived steps and the accuracy of prediction is enhanced. Taking this advantage, GEHK is more efficient than indirect Kriging and performs better in aerodynamic optimization and gets a better result. Compared with standard hierarchical Kriging model, using Euler solutions as low-fidelity data, derived samples provide a better global prediction for building Kriging model and thus GEHK obtains better results. GEHK model has been successfully used in a multipoint drag reduction case, which indicates its ability in complicated design cases. The new method has overcome limitations of traditional gradient-based Kriging model and the prediction accuracy of the model can be improved globally. The optimization is more efficient employing the proposed model.
SONG Chao , YANG Xudong , SONG Wenping . Efficient aerodynamic optimization method using hierarchical Kriging model combined with gradient[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(7) : 2144 -2155 . DOI: 10.7527/S1000-6893.2015.0260
[1] KHURI A I, MUKHOPAHYAY S. Response surface methodology[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2011, 2(2):128-149.
[2] AHN J, KIM H J, LEE D H, et al. Response surface method for airfoil design in transonic flow[J]. Journal of Aircraft, 2012, 38(2):231-238.
[3] 白俊强, 王丹, 何小龙, 等. 改进的RBF神经网络在翼梢小翼优化设计中的应用[J]. 航空学报, 2014, 35(7):1865-1873. BAI J Q, WANG D, HE X L, et al. Application of an improved RBF neural network on aircraft winglet optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1865-1873(in Chinese).
[4] 蒙文巩, 马东立, 楚亮. 基于神经网络响应面的机翼气动稳健性优化设计[J]. 航空学报, 2010, 31(6):1134-1140. MENG W G, MA D L, CHU L. Wing aerodynamic robustness optimization based on neural network response surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1134-1140(in Chinese).
[5] MCDONALD D B, GRANTHAM W J, TABOR W L, et al. Global and local optimization using radial basis function response surface models[J]. Applied Mathematical Modelling, 2007, 31(10):2095-2110.
[6] WANG J G, LIU G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 91(23):2611-2630.
[7] 王晓锋, 席光. 基于Kriging模型的翼型气动性能优化设计[J]. 航空学报, 2005, 26(5):545-549. WANG X F, XI G. Aerodynamic optimization design for airfoil based on Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5):545-549(in Chinese).
[8] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2):413-420.
[9] 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3):804-818. SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):804-818(in Chinese).
[10] TOAL D J J, BRESSLOFF N W, KEANE A J. Kriging hyperparameter tuning strategies[J]. AIAA Journal, 2008, 46(5):1240-1252.
[11] ZHANG Y, LEITHEAD W E. Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process[J]. Applied Mathematics and Computation, 2005, 171(2):1264-1281.
[12] CHUNG H S, ALONSO J J. Using gradients to construct coKriging approximation models for high-dimensional design optimization problems:AIAA-2002-0317[R]. Reston:AIAA, 2002.
[13] LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with kriging and coKriging[J]. AIAA Journal, 2008, 46(2):498-507.
[14] KENNEDY M C, O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87(1):1-13.
[15] HAN Z H, GÖRTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896.
[16] LIU W, BATILL S M. Gradient-enhanced response surface approximations using Kriging models:AIAA-2002-5456[R]. Reston:AIAA, 2002.
[17] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
[18] JAMESON A, MARTINELLI L, PIERCE N A. Optimum aerodynamic design using the Navier-Stokes equations[J]. Theoretical and Computational Fluid Dynamics, 1998, 10(1-4):213-237.
[19] COOK P, MCDONALD M, FIRMIN M. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements:AGARD 138[R]. Paris:AGARD, 1979.
[20] PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston:AIAA, 2013.
[21] 张扬, 白俊强, 朱军, 等. 改进Hicks-Henne型函数法在翼型参数化中的应用[J]. 飞行力学, 2011, 29(5):35-38. ZHANG Y, BAI J Q, ZHU J, et al. Application of improved Hicks-Henne shape function to airfoil parameterization[J]. Flight Dynamics, 2011, 29(5):35-38(in Chinese).
[J]
/
〈 | 〉 |