ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system
Received date: 2015-07-28
Revised date: 2015-08-28
Online published: 2015-09-02
Supported by
National Science and Technology Major Project (2013ZX04001-021)
The equipment and the machining process of mirror milling system are effective for aircraft skin parts, whose particular process puts forward special demands on machining tool path, including equal tool path interval, non-cross, no tool retractions and no uncut region. Due to the complex shapes of machining features in aircraft skin parts, it is a difficult task to optimize tool path for uncut regions under the requirements of equal tool path interval, non-cross, no tool retractions. To solve this problem, a feature-based tool path optimization method for uncut regions is proposed. The process information is associated with geometric information based on features, and then the machining surface and its corresponding tool path are extracted automatically. Tool paths are divided into several subdivision tool paths to construct subdivision machining areas, and the final machining area is obtained by union Boolean operation. Then the uncut regions are detected by executing the subtraction Boolean operation between the machining surface area and the final machining area, and the optimized tool path satisfying the special tool path requirements is eventually generated according to the location of the uncut regions adaptively. A typical complex aircraft skin part is used to verify the proposed method and the result proves that uncut regions can be recognized automatically and the optimized tool paths which satisfy the special tool path requirements are generated. The proposed method can provide technical support for improving the NC programming efficiency for aircraft skin parts.
Key words: skin; mirror milling; uncut regions; recognition; tool path optimization
LIU Shaowei , LI Yingguang , HAO Xiaozhong , LIU Changqing , XIANG Bingfei . Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(7) : 2295 -2302 . DOI: 10.7527/S1000-6893.2015.0240
[1] 张彤. 飞机蒙皮厚度精确加工的最新技术——以数铣替代化铣的绿色加工工艺[J]. 教练机, 2011(4):25-29. ZHANG T. Up-to-date technology for precision machining of aircraft skin thickness-Greenhouse machining technology for the CNC milling instead of chemical milling[J]. Trainer, 2011(4):25-29(in Chinese).
[2] 张志国, 徐学民. MMS:新型绿色蒙皮加工系统[J]. 航空制造技术, 2010(19):84-86. ZHANG Z G, XU X M. MMS:The latest green skin machining system[J]. Aeronautical Manufacturing Technology, 2010(19):84-86(in Chinese).
[3] 鲁达. 新一代飞机蒙皮绿色加工技术[J]. 航空制造技术, 2010(16):102-103. LU D. New generation green machining technology for aircraft skin[J]. Aeronautical Manufacturing Technology, 2010(16):102-103(in Chinese).
[4] LIN Z, FU J, SHEN H, et al. Global uncut regions removal for efficient contour-parallel milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1241-1252.
[5] CHOY H S, CHAN K W. A corner-looping based tool path for pocket milling[J]. Computer-Aided Design, 2003, 35(2):155-166.
[6] CHIANG C S, HOFFMANN C M, LYNC R E. How to compute offsets without self-intersection[J]. SPIE Proceedings, 1992, 1610:1-12.
[7] CHOI B K, KIM B H. Die-cavity pocketing via cutting simulation[J]. Computer-Aided Design, 1997, 29(12):837-846.
[8] 刘金义, 刘爽. Voronoi图应用综述[J]. 图学学报, 2004, 25(2):125-132. LIU J Y, LIU S. A survey on applications of Voronoi diagrams[J]. Journal of Engineering Graphics, 2004, 25(2):125-132(in Chinese).
[9] 牟园伟, 陆山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真[J]. 航空学报, 2013, 34(2):282-290. MU Y W, LU S. Numerical simulation of fatigue-crack-initiation life for turbine disk based on material microcosmic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):282-290(in Chinese).
[10] 马玉伟. 平面型腔数控加工刀具直径确定与刀轨生成技术研究[D]. 南京:南京航空航天大学, 2008:39-51. MA Y W. Research on determination of tool diameter for planar-pocket NC machining and tool-path generation technology[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008:39-51(in Chinese).
[11] 马玉伟, 安鲁陵. 均匀偏置型腔加工残留区域分析[J]. 机械制造与自动化, 2008, 37(2):37-38. MA Y W, AN L L. Analysis of uncut areas in pocket maching[J]. Machine Building & Automation, 2008, 37(2):37-38(in Chinese).
[12] MANSOR M S A, HINDUJA S, OWODUNNI O. Voronoi diagram-based tool path compensations for removing uncut material in 21/2D pocket machining[J]. Computer-Aided Design, 2006, 38(3):194-209.
[13] CHOI B K, PARK S C. A pair-wise offset algorithm for 2D point-sequence curve[J]. Computer-Aided Design, 1999, 31(99):735-745.
[14] PARK S C, CHOI B K. Uncut free pocketing tool-paths generation using pair-wise offset algorithm[J]. Computer-Aided Design, 2001, 33(10):739-746.
[15] YAN S, WANG S, TONG S. Uneven offset method of NC tool path generation for free-form pocket machining[J]. Computers in Industry, 2000, 43(1):97-103.
[16] 王晶, 张定华, 罗明, 等. 复杂曲面零件五轴加工刀轴整体优化方法[J]. 航空学报, 2013, 34(6):1452-1462. WANG J, ZHANG D H, LUO M, et al. A global tool orientation optimization method for five-axis CNC machining of sculptured surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1452-1462(in Chinese).
[17] CHOI B K, KIM D H, JERARD R B. C-space approach to tool-path generation for die and mould machining[J]. Computer-Aided Design, 1997, 29(97):657-669.
[18] LIU X, LI Y, TANG L. A dynamic feature-based operation planning method for 2.5-axis numerical control machining of complex structural parts[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2015, 229(7):1206-1220.
[19] LIU X, LI Y, LI Q. A machining feature information model for dynamic manufacturing planning[J]. Procedia CIRP, 2014, 25:100-105.
[20] WANG W, LI Y, TANG L. Drive geometry construction method of machining features for aircraft structural part numerical control machining[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2014, 228(10):1214-1225.
[21] 闫海兵. 飞机结构件复杂加工特征识别技术的研究与实现[D]. 南京:南京航空航天大学, 2010:23-28. YAN H B. Research and implementation of complicated machining features recognition technology for the aircraft structural parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:23-28(in Chinese).
[22] 李迎光, 郝小忠, 刘少伟, 等. 飞机蒙皮零件特征识别方法:ZL104462656A[P]. 2015-03-25. LI Y G, HAO X Z, LIU S W, et al. The recognition method of feature for aircraft skin parts:ZL104462656A[P]. 2015-03-25(in Chinese).
/
〈 |
|
〉 |