ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research and application of adaptive optimal control pilot model
Received date: 2015-05-07
Revised date: 2015-08-02
Online published: 2015-08-31
Supported by
National Natural Science Foundation of China (51505493,91116019);National Basic Research Program of China (2011CB707002)
The traditional optimal control pilot model (OCM) is based on Kalman filter which cannot reveal the pilot behavior in time varying disturbance of unknown environment. To overcome the omissions of OCM, a Modified optimal control pilot model based on adaptive state estimate (MOCM-AE) is developed, and the algorithm implementation is given. By magnitude and phase comparison in frequency domain, the MOCM-AE is testified through flight test reproduction. And the MOCM-AE is more identical to the measurements than OCM. In carrier landing application, the OCM depends on the priori experience grievously, and the MOCM-AE shakes off the fetters of the prior knowledge. In unknown low altitude disturbance, it improves the landing accuracy by 59% and reduces the touchdown point dispersion scope by 29%. The advantage are shown in the model evaluation and MOCM-AE is more proper to describe the pilot behavior in unknown environment.
Key words: carrier landing; pilot model; optimal control; unknown disturbance; state estimate
LIU Jia , XIANG Jinwu , ZHANG Ying , SUN Yang , XIAO Chuwan . Research and application of adaptive optimal control pilot model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(4) : 1127 -1138 . DOI: 10.7527/S1000-6893.2015.0222
[1] TULCIO S D, RICHARD J W. Factors influencing glide path control in carrier landing[J]. Journal of Aircraft, 1967, 4(2):146-158.
[2] 王新华, 杨一栋, 朱华. 低动压着舰状态下飞机的操纵特性研究[J]. 飞行力学, 2007, 25(4):29-36. WANG X H, YANG Y D, ZHU H. Research of handling characteristics of aircraft in low dynamic pressure situation[J]. Flight Dynamics, 2007, 25(4):29-36(in Chinese).
[3] 董庚寿, 张俊, 周佳, 等. GJB3719-99舰载飞机规范飞行品质[S]. 北京:中国人民解放军总装备部, 2000. DONG G S, ZHANG J, ZHOU J, et al. GJB3719-99 Ship-based airplane specification flying qualities[S]. Beijing:PLA General Armament Department, 2000(in Chinese).
[4] van KAMPEN E, ZAAL P M T, de WEERDT E, et al. Optimization of human perception modeling using interval analysis[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):42-52.
[5] NIEUWENHUIZEN F M, MULDER M, van PAASSEN M M, et al. Influences of simulator motion system characteristics on pilot control behavior[J] Journal of Guidance, Control, and Dynamics, 2013, 36(3):667-676.
[6] ZAAL P M T, POOL D M, MULDER M, et al. Identification of multimodal pilot control behavior in real flight[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5):1527-1538.
[7] 谭文倩, A. V. Efremov, 屈香菊. 俯仰跟踪任务中的驾驶员神经网络模型辨识[J]. 航空学报, 2010, 31(9):1708-1714. TAN W Q, EFREMOV A V,QU X J. Identification of pilot neural network model in pitch tracking[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1708-1714(in Chinese).
[8] YANG C P, YIN T W, ZHAO W N, et al. Human factors quantification via boundary identification of flight performance margin[J]. Chinese Journal of Aeronautics, 2014, 27(4):977-985.
[9] MORI R, SUZUKI S. Neural network modeling of lateral pilot landing control[J]. Journal of Aircraft, 2009, 46(5):1721-1726.
[10] 程建锋, 董新民, 薛建平, 等. 飞机-驾驶员闭环系统模糊预见控制器设计[J]. 航空学报, 2014, 35(3):807-820. CHENG J F, DONG X M, XUE J P, et al. Fuzzy preview controller design for aircraft-pilot closed loop system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):807-820(in Chinese).
[11] 谭文倩, A. V. Efremov, 屈香菊. 一种预测驾驶员操纵行为的建模方法[J]. 北京航空航天大学学报, 2010, 36(10):1140-1144. TAN W Q, EFREMOV A V, QU X J. Approach of pilot modeling for predicting pilot control behavior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10):1140-1144(in Chinese).
[12] 屈香菊. 驾驶员控制模型的建模研究[D]. 北京:北京航空航天大学, 2003. QU X J. Study on modeilng human pilot control[D]. Beijing:Beijing University of Aeronautics and Astronautics, 2003(in Chinese).
[13] KLEINMAN D L, BARON S, LEVISON W H. An optimal control model of human response, Part I & Ⅱ[J]. Automatica, 1970, 6(3):357-383.
[14] EDKINS C R. The prediction of pilot opinion ratings using optimal and sub-optimal pilot models[D]. Ohio:Department of the Air Force Air University, Air Force Institute of Technology, 1994.
[15] 薛红军, 巫火根, 张晓燕, 等. 驾驶员最优控制模型的应用研究[J]. 飞行力学, 2014, 32(4):294-297. XUE H J, WU H G, ZHANG X Y, et al. Application and research of the pilot optimal control model[J]. Flight Dynamics, 2014, 32(4):294-297(in Chinese).
[16] EDKINS C R. Human pilot response during single and multi-axis tracking tasks:AFFTC-TLR-93-41[R]. California:Air Force Flight Test Center, 1993.
[17] DAVIDSON J B, SCHMIDT D K. Modified optimal control pilot model for computer-aided design and analysis:NASA-TM-4384[R]. Washington, D.C.:NASA, 1992.
[18] RAN C J, DENG Z L. Self-tuning weighted measurement fusion Kalman filtering algorithm[J]. Computational Statistics and Data Analysis, 2012, 56:2112-2128.
[19] NELSON R C. 飞行稳定性和自动控制[M]. 第2版. 顾均晓, 译. 北京, 国防工业出版社, 2008:435-444. NELSON R C. Flight stability and automatic control[M]. 2nd ed. GU J X, translated. Beijing:National Defense and Industry Press, 2008:435-444(in Chinese).
[20] CHALK C R, NEAL T P, HARRIS T M, 等. 军用规范——有人驾驶飞机的飞行品质MIL-F-8785B(ASG)的背景资料和使用指南[M]. 北京:628研究所, 1977:32. CCALK C R, NEAL T P, HARRIS T M, et al. Background information and user guide for MIL-F-8785B (ASG), "Military Specification Flying Qualities of Piloted Airplanes"[M]. Beijing:628 Research Institute, 1977:32(in Chinese).
[21] MOORHOUSE D J, WOODCOCK R J. Background information and user guide for MiL-F-8785-C, Military Specification Flying Qualities of Piloted Airplanes:AFWAL-TR-81-3209[R]. Ohio:Air Force Wright Aeronautical Laboratories, 1981.
/
〈 | 〉 |