Electronics and Control

A rapid trajectory planning algorithm for UAV in urban areas with wind fields

  • LI Yan ,
  • WANG Zhong ,
  • QI Yanjun ,
  • WANG Yixin
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2015-04-29

  Revised date: 2015-08-26

  Online published: 2015-08-29

Supported by

National Natural Science Foundation of China(61473233)

Abstract

A rapid trajectory planning algorithm for small unmanned aerial vehicles(UAVs) in urban areas with wind fields is proposed. The dense obstacles and complex wind fields in the urban area have posed strict requirements on the real-time capability and tracking performance of trajectory planning. Firstly, the kinematic model of the fixed-wing UAV is reasonably simplified to ensure the efficiency of the trajectory planning algorithm. Based on the basic principles of the constrained optimal control theory, the optimal trajectory in the presence of obstacles cannot be directly and fully characterized. And it is shown that the optimal trajectory can be reasonably approximated using spiral and straight line segments. Then a rapid three-dimensional near-optimal trajectory planning algorithm in urban areas is proposed. From a perspective of planning, the new trajectory planning standards and constraints in wind fields are presented. The comparison simulations show the efficiency of the proposed algorithm. Trajectory tracking performance simulations with and without wind fields are also implemented using a 6 degree-of-freedom(DOF) UAV model. And the numerical results also show the effectiveness of the proposed planning standards in wind fields.

Cite this article

LI Yan , WANG Zhong , QI Yanjun , WANG Yixin . A rapid trajectory planning algorithm for UAV in urban areas with wind fields[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 949 -959 . DOI: 10.7527/S1000-6893.2015.0236

References

[1] SAMAD T, BAY J S, GODBOLE D. Network-centric systems for military operations in urban terrain:The role of UAVs[J]. Proceedings of the IEEE, 2007, 95(1):92-107.
[2] JONGRAE K, CRASSIDIS J L. UAV path planning for maximum visibility of ground targets in an urban area[C]//Proceedings of International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2010:26-29.
[3] KANISTRAS K, MARTINS G, RUTHERFORD M J, et al. Handbook of unmanned aerial vehicles[M]. Berlin:Springer, 2014:2643-2666.
[4] CHAIMOWICZ L, COWLEY A, GOMEZ D, et al. Multi-robot systems, from swarms to intelligent automata[M]. Berlin:Springer, 2005:223-234.
[5] 张伯寅, 桑建国, 吴国昌. 建筑群环境风场的特性及模拟——风环境模拟研究之一[J]. 力学与实践, 2004, 26(3):1-9. ZHANG B Y, SANG J G, WU G C. Applications of aerodynamics in the architectural wind field-Simulation studies of wind environment[J]. Mechanics in Engineering, 2004, 26(3):1-9(in Chinese).
[6] TSOURDOS A, WHITE B, SHANMULGAVEL M. Cooperative path planning of unmanned aerial vehicles[M]. Hoboken, NJ:Wiley, 2011:10-20.
[7] KARAMAN S, FRAZZOLI E. Sampling-based optimal motion planning for non-holonomic dynamical systems[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2013:5041-5047.
[8] KARAMAN S, FRAZZOLI E. Optimal kinodynamic motion planning using incremental sampling-based methods[C]//Proceedings of IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2010:7681-7687.
[9] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7):846-894.
[10] 陈琦, 王中原, 常思江, 等. 不确定飞行环境下的滑翔制导炮弹方案弹道优化[J]. 航空学报, 2014, 35(9):2593-2604. CHEN Q, WANG Z Y, CHANG S J, et al. Optimal trajectory design under uncertainty for a gliding guided projectile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2593-2604(in Chinese).
[11] 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7):1240-1251. ZHANG Y, ZHANG W P, CHEN J, et al. Air-to-ground weapon delivery trajectory for UCAV using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1240-1251(in Chinese).
[12] 王宏伦, 裴云峰, 倪少波, 等. 飞行器无动力应急着陆域和着陆轨迹设计[J]. 航空学报, 2014, 35(5):1404-1415. WANG H L, PEI Y F, NI S B, et al. Design of emergency landing region and landing trajectory of unpowered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1404-1415(in Chinese).
[13] ZHANG Y, CHEN J, SHEN L C. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control[J]. Chinese Journal of Aeronautics, 2013, 26(4):1038-1056.
[14] ETKIN B. Dynamics of atmospheric flight[M]. Mineola, NY:Dover Publications, 2005:129-130.
[15] CESARI L. Optimization-Theory and applications[M]. Berlin:Springer, 1983:196-199.
[16] PONTRYAGIN L S. Mathematical theory of optimal processes[M]. Boca Raton, FL:CRC Press, 1987:257-311.
[17] BRYSON A E, HO Y C. Applied optimal control:Optimization, estimation and control[M]. Boca Raton, FL:CRC Press, 1975:117-126.
[18] HARTL R F, SETHI S P, VICKSON R G. A survey of the maximum principles for optimal control problems with state constraints[J]. SIAM review, 1995, 37(2):181-218.
[19] LOXTON R C, TEO K L, REHBOCK V, et al. Optimal control problems with a continuous inequality constraint on the state and the control[J]. Automatica, 2009, 45(10):2250-2257.
[20] VAN K T, GILLOT J, DE J B, et al. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[J]. Automatica, 2014, 50(1):187-192.
[21] JACKSON S, TISDALE J, KAMGARPOUR M, et al. Tracking controllers for small UAVs with wind disturbances:Theory and flight results[C]//Proceedings of IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2008:564-569.
[22] RYSDYK R. Unmanned aerial vehicle path following for target observation in wind[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1092-1100.
[23] RATNOO A, SUJIT P B, KOTHARI M. Adaptive optimal path following for high wind flights[C]//IFAC World Congress. African Agenda:IFAC, 2011:12985-12990.
[24] WOLEK A, WOOLSEY C. Disturbance rejection in Dubins path planning[C]//Proceedings of IEEE American Control Conference. Piscataway, NJ:IEEE Press, 2012:4873-4878.

Outlines

/