Material Engineering and Mechanical Manufacturing

Processing method of blade root of blisk based on principle of electrochemical sweep shaping

  • WANG Fuyuan ,
  • ZHAO Jianshe
Expand
  • 1. School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
    2. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-05-26

  Revised date: 2015-06-25

  Online published: 2015-07-07

Supported by

National Natural Science Foundation of China (51405418); Open Foundation of Non-traditional Machining Key Laboratory of Shaanxi Province; Aeronautical Science Foundation of China (2011ZE52055)

Abstract

The machining residual will be formed at the blade root after the blisk is processed by the electrochemical machining (ECM) method by the sheet or tubular cathode because of the influences of the movement and shape of the cathode, and it will reduce the machining precision of the blisk. In order to remove the residual at the root of the blade after electrochemical machining, the electrochemical machining scheme on blade root is carried out. Firstly, the machining scheme is determined according to the residual distribution and the structure of the channel. Secondly, the cathode structure is developed and the processing paths are calculated. The sector structure is adopted in the flow path and the flow velocity distribution is analyzed; therefore, the flow field of the cathode is improved by adding the drainage, changing the angle and other measures. The processing paths are optimized and the motion interference and the NC program are verified by the special-purpose simulation software. The lack resulting from the difference between the width of the channel and the width of the front edge of the cathode is compensated by the increase of additional rotation of the blisk. Finally, the ECM unit is made and the electrochemical machining tests about the root are carried out and verify the method. The result proves that the residual is effectively removed at the blade root and the surface quality and the processing accuracy meets the requirements.

Cite this article

WANG Fuyuan , ZHAO Jianshe . Processing method of blade root of blisk based on principle of electrochemical sweep shaping[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3457 -3464 . DOI: 10.7527/S1000-6893.2015.0191

References

[1] Ren J X, Zhang D H, Wang Z Q, et al. Research on the NC machining technique of blisk[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2): 205-208 (in Chinese). 任军学, 张定华, 王增强, 等. 整体叶盘数控加工技术研究[J]. 航空学报, 2004, 25(2): 205-208.
[2] Luo M, Wu B H, Li S, et al. Five-axis tool orientation optimization based on kinematical method[J]. Journal of Mechanical Engineering, 2009, 45(9): 159-163 (in Chinese). 罗明, 吴宝海, 李山, 等. 自由曲面五轴加工刀轴矢量的运动学优化方法[J]. 机械工程学报, 2009, 45(9): 159-163.
[3] Li X Y, Ren J X, Liang Y S, et al. Tool axis planning for five-axis machining of complex channel parts[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2641-2651 (in Chinese). 李祥宇, 任军学, 梁永收, 等. 复杂通道类零件五轴加工刀轴规划[J]. 航空学报, 2014, 35(9): 2641-2651.
[4] Dong L, Cao L X. Approximation method of tunnel surfaces with general cylindrical surfaces and its application in plunge milling of impellers[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2331-2340 (in Chinese). 董雷, 曹利新. 通道曲面的柱面逼近方法及其在叶轮插铣中的应用[J]. 航空学报, 2014, 35(8): 2331-2340.
[5] Shi W, Ning T, Chen Z T. Tool position feasible area of torus tool in machining blade root transitional surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3470-3479 (in Chinese). 石巍, 宁涛, 陈志同. 环面工具加工叶根过渡曲面的刀位可行域[J]. 航空学报, 2014, 35(12): 3470-3479.
[6] Song M X, Zhao X H, Guo W, et al. Developments and present situation of diffusion bonding of titanium alloy to other metals[J]. Welding & Joining, 2005(1): 5-7 (in Chinese). 宋敏霞, 赵熹华, 郭伟, 等. 钛合金与其它金属材料扩散连接研究现状与发展[J]. 焊接, 2005(1): 5-7.
[7] Zhong Y, Hu C. Welding line structure design and test of linear friction welding blisk[J]. Gas Turbine Experiment and Research, 2012, 25(S0): 44-47 (in Chinese). 钟燕, 胡超. 线性摩擦焊整体叶盘焊缝结构设计及试验[J]. 燃气涡轮试验与研究, 2012, 25(增刊): 44-47.
[8] Zhang M Q, Fu J Y. Application analysis of precise vibrating electrochemical machining in high-temperature alloy disk[J]. Aeronautical Manufacturing Technology, 2009(22): 27-29 (in Chinese). 张明岐, 傅军英. 高温合金整体叶盘精密振动电解加工方法的应用分析[J]. 航空制造技术, 2009(22): 27-29.
[9] Liu J, Xu Z Y, Wan L K, et al. Design and experiment of electrolyte flow mode in electrochemical machining of blisk[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 259-267 (in Chinese). 刘嘉, 徐正扬, 万龙凯, 等. 整体叶盘叶型电解加工流场设计及实验[J]. 航空学报, 2014, 35(1): 259-267.
[10] Shan D B, Liu F, Xu W C, et al. Experimental study on process of precision forging of an aluminum-alloy rotor[J]. Journal of Materials Processing Technology, 2005, 170(1-2): 412-415.
[11] Wilk W, Tota J. Modern technology of the turbine blades removal machining[C]//8th International Conference on Advanced Manufacturing Operations, 2007: 347-355.
[12] Bußmann M,Bayer E. Blisk production of the future technological and logistical aspects of future-oriented construction and manufacturing processes of integrally bladed rotors[C]//19th International Symposium on Air Breathing Engines. Reston: American Institute of Aeronautics and Astronautics, 2009: 1169-1177.
[13] Jiang H F. Development and manufacturing technology of combustion turbine engine[J]. Aeronautical Manufacturing Technology, 2007(5): 36-39 (in Chinese). 江和甫. 燃气涡轮发动机的发展与制造技术[J]. 航空制造技术, 2007(5): 36-39.
[14] Huang W, Huang C F, Wang Y M. Key manufacturing technology research of advanced aero-engine[J]. Aeronautical Manufacturing Technology, 2009(3): 42-48 (in Chinese). 黄维, 黄春峰, 王永明. 先进航空发动机关键制造技术研究[J]. 航空制造技术, 2009(3): 42-48.
[15] Xu J W, Yun N Z, Tang Y X, et al. The modeling of NC-electrochemical contour evolution machining using a rotary tool-cathode[J]. Journal of Materials Processing Technology, 2005, 159(2): 272-277.
[16] Zhu Y W, Xu J W. Shaping law and process study on combined wobbling feeds for electrochemical contour evolution machining integral component parts[J]. Journal of Mechanical Engineering, 2008, 44(12): 280-286 (in Chinese). 朱永伟, 徐家文. 复合平面摆动展成电解加工整体构件异形面的成形分析及应用[J]. 机械工程学报, 2008, 44(12): 280-286.
[17] Wu J M. Research on the large diameter integral impeller with numerical control electrochemical machining[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). 吴建民. 大直径整体叶轮数控电解加工技术研究[D]. 南京: 南京航空航天大学, 2008.
[18] Wang F Y, Xu J W, Zhao J S. Process and test of electrochemical machining of large diameter integral impeller by fractional step machining method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2450-2456 (in Chinese). 王福元, 徐家文, 赵建社. 大直径整体叶轮分步法电解加工工艺与试验[J]. 航空学报, 2010, 31(12): 2450-2456.
[19] Xu Q, Zhu D, Xu Z Y, et al. Optimization of cathode multidimensional movement path in electrochemical machining of blisk channels[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 1548-1554 (in Chinese). 徐庆, 朱荻, 徐正杨, 等. 整体叶盘通道电解加工电极多维运动轨迹优化[J]. 航空学报, 2011, 32(5): 1548-1554.
[20] Zhao J S, Wang F Y, Xu J W, et al. Research on electrochemical machining process for fine finishing of integral impeller with free-form surface[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2841-2848 (in Chinese). 赵建社, 王福元, 徐家文, 等. 整体叶轮自由曲面叶片精密电解加工工艺研究[J]. 航空学报, 2013, 34(12): 2841-2848.

Outlines

/