Solid Mechanics and Vehicle Conceptual Design

Analysis of energy absorption capability of M-type folded core sandwich structure

  • ZHOU Huazhi ,
  • WANG Zhijin
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-03-04

  Revised date: 2015-06-01

  Online published: 2015-06-28

Supported by

Funding of Jiangsu Innovation Program for Graduate Education(KYLX_0298);the Fundamental Research Funds for the Central Universities

Abstract

The folded core sandwich panel, as an advanced sandwich composite structure, is a new type sandwich structure and has a lot of advantages. In this paper, a finite element model of the folded core with imperfections is set up to study the relation between the energy absorption coefficient and the geometric characteristics of M-type folded core. The result of the dynamic compression test simulation agrees well with the experimental result in the CELPACT program. When compared with the ability of honeycomb core, the folded core shows great advantages in energy absorption ability. The energy absorption coefficient of the folded core is more than twice the coefficient of the honeycomb core. The relations between the energy absorption ability and the geometric characteristics of M-type folded core are studied with the help of the response surface method. Finally, an optimization based on the Latin hypercube sampling(LHS) and multi-objective non-dominated sorting genetic algorithm(NSGA-Ⅱ) is proceeded to obtain the folded core with the best energy absorption ability.

Cite this article

ZHOU Huazhi , WANG Zhijin . Analysis of energy absorption capability of M-type folded core sandwich structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 579 -587 . DOI: 10.7527/S1000-6893.2015.0168

References

[1] LAVOIE J A, MORTON J. Design and application of a quasistatic crush test fixture for investigating scale effects in energy absorbing composite plates:NASA Contractor Report 4526[R]. Washington, D.C.:National Aeronautics and Space Administration, 1993:1-57.
[2] 刘瑞同, 王鑫伟, 荚淑萍. 碳纤维-环氧树脂波纹梁吸能能力的试验研究[J]. 航空学报, 2001, 23(1):59-61. LIU R T, WANG X W, JIA S P. Effect of trigger geometry on energy absorption of composite waved-beams[J]. Acta Aeronautica et Astronautica Sinica, 2001, 23(1):59-61(in Chinese).
[3] 龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟[J]. 航空学报, 2005, 26(3):298-302. GONG J J, WANG X W. Numerical simulation of energy absorption capability of composite waved beams[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3):298-302(in Chinese).
[4] ZHOU W Y, CRAIG J, HANAGUD S. Crashworthy behavior of graphite/epoxy composite sine wave webs[C]//32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 1991:1618-1626.
[5] INDERMUEHLE K, BARNES G, NIXON S, et al. Simulating composites crush and crash events using ABAQUS[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2009:1-12.
[6] NAGEL G M, THAMBIRATNAM D P. A numerical study on the impact response and energy absorption of tapered thin-walled tubes[J]. International Journal of Mechanical Sciences, 2004, 46(2):201-216.
[7] SANTOSA S, BANHART J, WIERZBICKI T. Experimental and numerical analyses of bending of foam-filled sections[J]. Acta Mechanica, 2001, 148(1-4):199-213.
[8] TAN X C, CHEN X G. Modelling energy absorption in textile composite cellular structures[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2008:1-12.
[9] 倪先平, 王永亮, 荚淑萍, 等. 直升机机身下部复合材料典型结构耐坠特性研究[J]. 复合材料学报, 2003, 20(4):51-57. NI X P, WANG Y L, JIA S P, et al. Analysis of crash impact behavior of typical composite components of helicopter bottom structure[J]. Acta Materiae Compositae Sinica, 2003, 20(4):51-57(in Chinese).
[10] 王志瑾, KHALIULIN V I. 皱褶结构芯格构型的几何设计方法[J]. 南京航空航天大学学报, 2002, 34(1):6-11. WANG Z J, KHALIULIN V I. Geometry design method of folded structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(1):6-11(in Chinese).
[11] 曾会华, 徐庆华. 皱褶芯材结构的几何设计与研究[J]. 内江科技, 2009, 30(3):84. ZENG H H, XU Q H. Geometry design and study of folded core structure[J]. Magazine of Neijiang Science, 2009, 30(3):84(in Chinese).
[12] 张慧, 王志瑾. 复合材料层合板皱褶芯材当量力学性能研究[J]. 江苏航空, 2012, 1(S1):133-136. ZHANG H, WANG Z J. Equivalent mechanical properties study of composite folded core sandwich structure[J]. Jiangsu Aviation, 2012, 1(S1):133-136(in Chinese).
[13] HEIMBS S, MIDDENDORF P, KILCHERT S, et al. Experimental and numerical analysis of composite folded sandwich core structures under compression[J]. Applied Composite Materials, 2007, 14(5-6):363-377.
[14] HEIMBS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads[J]. Composite Structures, 2010, 92(6):1485-1497.
[15] HEIMBS S, MEHRENS T, MIDDENDORF P, et al. Numerical determination of the nonlinear effective mechanical properties of folded core structures for aircraft sandwich panels[C]//6th European LS-DYNA Users' Conference. Sweden:Gothenburg, 2007:29-30.
[16] BARANGER E, GUIDAULT P A, CLUZEL C. Numerical modeling of the geometrical defects of an origami-like sandwich core[J]. Composite Structures, 2011, 93(10):2504-2510.
[17] 方开泰, 王元. 数论方法在统计中的应用[M]. 北京:科学出版社, 1996:222-224. FANG K T, WANG Y. Application of the number theory in statistics[M]. Beijing:Science Press, 1996:222-224(in Chinese).
[18] 马兆允, 徐亚栋. 多项式响应面方法在结构近似分析中的应用[J]. 科技资讯, 2006, 33:111-112. MA Z Y, XU Y D. Application of polynomial response surface method in structural approximate analysis[J]. Science & Technology Information, 2006, 33:111-112(in Chinese).
[19] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ[J]. Lecture Notes in Computer Science, 2000, 1917:849-858.
[20] FISCHER S, DRECHSLER K, KILCHERT S, et al. Mechanical tests for foldcore base material properties[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(12):1941-1952.
[21] HONG S T, PAN J, TYAN T, et al. Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads[J]. International Journal of Plasticity, 2006, 22(1):73-109.

Outlines

/