ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator
Received date: 2015-04-10
Revised date: 2015-06-15
Online published: 2015-06-16
Supported by
National Natural Science Foundation of China(11002161, 11372349);Foundation for the Author of National Excellent Doctor Dissertation of China(201058);Aeronautical Science Foundation of China(20121288002);Foundation for the Excellent Youth of NUDT(2013-CT-01)
A horizontal dual synthetic jet actuator(DSJA) is designed. And experimental investigation on the separation flow control of stalled NACA0015 airfoil at high angle of attack is carried out with dual synthetic jet actuator. Characteristics of the flow separation control under DSJA with different jet locations and different jet energy are investigated. Results indicate that the stall angle is delayed by introducing DSJA. Jet locations of DSJA play a critical role. It is interesting that the control efficiency will be excellent when any of the dual synthetic jets locates in front of and is close to the unexcited separation point. When the separation points are between two exports of DSJA and the first export is close to the separation point, the effect will be better for DSJA to control airfoil separation. It suggests the DSJA has stronger ability than the synthetic jet actuator controlling flow separation. What's more, the ability of dual synthetic jets control flow separation can be increased by increasing jet energy.
LI Yujie , LUO Zhenbing , DENG Xiong , SUN Jian , SHEN Zheng . Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 817 -825 . DOI: 10.7527/S1000-6893.2015.0170
[1] LIGHTHILL J. Acoustic streaming[J]. Journal of Sound and Vibration, 1978, 61(3):391-418.
[2] JAMES R D, JACOBS J W, GLEZER A. A round turbulent jet produced by an oscillating diaphragm[J]. Physics of Fluids, 1996, 8(9):2484-2495.
[3] SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9):2281-2297.
[4] GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34:503-529.
[5] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2):221-234. LOU Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2):221-234(in Chinese).
[6] CATTAFESTA L, SHEPLAK M. Actuators for active flow control[J]. Annual Review of Fluid Mechanics, 2011, 43:247-272.
[7] AMITAY M, GLEZER A. Role of actuation frequency in controlled flow reattachment over a stalled airfoil[J]. AIAA Journal, 2002, 40(2):209-216.
[8] GILARRANZ J L, TRAUB L W, REDINIOTIS O K. A new class of synthetic jet actuators, Part Ⅱ:Application to flow separation control[J]. Journal of Fluids Engineering, 2005, 127(2):377-387.
[9] FARNSWORTH J A N, VACCARO J C, AMITAY M. Active flow control at low angles of attack:Stingray unmanned aerial vehicle[J]. AIAA Journal, 2008, 46(10):253-254.
[10] 郝书礼, 乔志德. 合成射流用于翼型分离流动控制的研究[J]. 西北工业大学学报, 2006, 24(4):528-531. HAO S L, QIAO Z D. Maximizing the effect of synthetic jet on airfoil separation flow control[J]. Journal of Northwestern Polytechnical University, 2006, 24(4):528-531(in Chinese).
[11] 韩忠华, 乔志德, 宋文萍. 零质量射流推迟翼型失速的数值模拟[J]. 航空学报, 2007, 28(5):1040-1046. HAN Z H, QIAO Z D, SONG W P. Numerical simulation of active flow control to airfoil stall using local synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1040-1046(in Chinese).
[12] 张攀峰, 王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报, 2008, 34(4):443-446. ZHANG P F, WANG J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4):443-446(in Chinese).
[13] 顾蕴松, 李斌斌, 程克明. 斜出口合成射流激励器横流输运特性与边界层控制[J]. 航空学报, 2010, 31(2):321-327. GU Y S, LI B B, CHENG K M. Cross flow transfer characteristics of a new beveled synthetic jet actuator and its applications to boundary layer control[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):321-327(in Chinese).
[14] MONIR H E, TADJFAR M, BAKHTIAN A. Tangential synthetic jets for separation control[J]. Journal of Fluids and Structures, 2014, 45:50-65.
[15] 许晓平, 周洲. 飞翼布局无人机微射流控制参数影响数值模拟[J]. 航空学报, 2014, 35(12):3293-3303. XU X P, ZHOU Z. Numerical simulation of micro-jet flow control parameters for flying-wing UAV[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3293-3303(in Chinese).
[16] 陈萍萍, 乔渭阳. 边界层吸气对压气机叶栅角区分离损失的控制[J]. 航空学报, 2014, 35(11):3000-3011. CHEN P P, QIAO W Y. Boundary layer suction on hub-corner separation loss in a linear compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3000-3011(in Chinese).
[17] 罗振兵, 夏智勋, 刘冰. 单膜双腔双口合成射流激励器:ZP200610031334.0[P]. 2006-08-16. LUO Z B, XIA Z X, LIU B. A synthetic jet actuator with a single diaphragm, dual cavities and exits:ZP200610031334.0[P]. 2006-08-16(in Chinese).
[18] LOU Z B, XIA Z X, LIU B. New generation of synthetic jet actuator[J]. AIAA Journal, 2006, 43(10):2418-2419.
[19] OYARZUN M A, CATTAFESTA L. Design and optimization of piezoceramic zero-net mass-flux actuators:AIAA-2010-4414[R]. Reston:AIAA, 2010.
[20] 王林. 合成双射流激励器流场特性及其控制机翼流动分离研究[D]. 长沙:国防科学技术大学, 2009. WANG L. Flow characteristics of dual synthetic jets actuator and its application on an airfoil separate flow control[D]. Changsha:National University of Defense Technology, 2009(in Chinese).
[21] 王林, 罗振兵, 夏智勋. 合成双射流控制翼型分离流动的数值模拟[J]. 空气动力学学报, 2012, 30(3):353-357. WANG L, LUO Z B, XIA Z X. Numerical evaluation on areodynamics of typical hypersonic sonfigurations for hypersonic flight[J]. Acta Aerodynamica Sinica, 2012, 30(3):353-357(in Chinese).
[22] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙:国防科学技术大学, 2006. LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micropump[D]. Changsha:National University of Defense Technology, 2006(in Chinese).
/
〈 | 〉 |