Material Engineering and Mechanical Manufacturing

Micro-magnetic NDT for surface crack defect in a GH4169 turbine disc simulated by artificial groove

  • HU Bo ,
  • YU Runqiao ,
  • XU Weijin
Expand
  • 1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
    2. Safety Environment Quality Surveillance and Inspection Research Institute, CNPC Chuanqing Drilling Engineering Co., Ltd., Guanghan 618300, China

Received date: 2015-04-09

  Revised date: 2015-06-06

  Online published: 2015-06-09

Supported by

National Natural Science Foundation of China (51265041, 51565043), Youth Science Foundation of Jiangxi Province (20151BAB216016), Youth Science Foundation of Education Department of Jiangxi Province (GJJ13488).

Abstract

This study proposes a micro-magnetic nondestructive testing (NDT) method in the geomagnetic field to detect the surface crack defect in a turbine disc. The magnetization characteristic curve of extensively used nickel base superalloy GH4169 is obtained by magnetized test. It is proved that the relative permeability of the material is slightly greater than the relative magnetic permeability of the air through the magnetic analysis. Thus, GH4169 is a weak paramagnetic substance. The mechanism of the micro-magnetic NDT method suitable for turbine disk specimen and magnetic anomaly characteristics of the defect are analyzed. The correctness of the theoretical analysis is verified through the testing of a turbine disk contained artificial crack defects. Test results show that the width and peak of the magnetic anomalies increase along with the increase of width and depth of surface crack. When the widths of cracks are the same, the deeper the depth, or the larger the deep width ratio, the greater the magnetic anomaly, and the position of crack has a certain influence on the positioning accuracy. The micro-magnetic NDT method provides new thoughts for the detection of surface crack defects of a turbine disc. The method can be further popularized and applied to other parts of the aeroengines, such as rotor blades, turbine shaft and the aircraft fuselage with similar magnetism features.

Cite this article

HU Bo , YU Runqiao , XU Weijin . Micro-magnetic NDT for surface crack defect in a GH4169 turbine disc simulated by artificial groove[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3450 -3456 . DOI: 10.7527/S1000-6893.2015.0173

References

[1] Chen Q, Guo H, Zhang C, et al. Structural optimization of uniaxial symmetry non-circular bolt clearance hole on turbine disk[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1142-1148.
[2] Gao Y, Bai G C, Zhang Y L. Reliability analysis of multiaxial low cycle fatigue life for turbine disk[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1678-1682 (in Chinese). 高阳, 白广忱, 张瑛莉. 涡轮盘多轴低循环疲劳寿命可靠性分析[J]. 航空学报, 2009, 30(9): 1678-1682.
[3] Qian W X, Yin X W, You M Y, et al. Disk low cycle fatigue life prediction based on multiaxial fatigue model[J]. Chinese Mechanical Engineering, 2009, 20(7): 843-846 (in Chinese). 钱文学, 尹晓伟, 由美雁, 等. 基于多轴疲劳模型的轮盘低循环疲劳寿命预测[J]. 中国机械工程, 2009, 20(7): 843-846.
[4] Wang X M, Wang T Y, Zhao Z H. et al. Creep damage behavior for serviced turbine blades and effects of solutioning on blade materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2784-2793 (in Chinese). 王小蒙, 王天佑, 赵子华, 等. 涡轮叶片蠕变损伤行为及固溶处理对叶片材料性能的影响[J]. 航空学报, 2014, 35(10): 2784-2793.
[5] Mu Y W, Lu S. Numerical simulation of fatigue-crack-initation life for turbine disk based on material microcosmic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 282-290 (in Chinese). 牟园伟, 陆山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真[J]. 航空学报, 2013, 34(2):282-290.
[6] Zhang F G, Zhang Y W, Tao Y. Ultrasonic nondestructive testing of p/m nickel base superalloy[J]. Powder Metallurgy Industry, 2004, 14(3): 16-19 (in Chinese). 张凤戈, 张义文, 陶宇. 镍基粉末高温合金的超声无损检测[J]. 粉末冶金工业, 2004, 14(3): 16-19.
[7] Zhang F G, Guo W M, Chen G S, Ultrasonic nondestructive evaluation of inclusions in FGH95 P/M tested disks[J]. Journal of Iron and Streel Research, 2000, 12(4): 51-54 (in Chinese). 张凤戈, 国为民, 陈淦生. FGH95粉末试验盘坯中夹杂物的超声无损评价[J]. 钢铁研究学报, 2000, 12(4): 51-54.
[8] Beiing Institute of Aeronautical Materials. HB/Z34—1998 Ultrasonic inspection of round cakes and plate of wrought superalloy[S]. Beijing: Aviation Industry Press, 1998: 1-2 (in Chinese). 北京航空材料研究院. HB/Z34—1998变形高温合金圆饼及盘件超声波检验[S]. 北京: 航空工业出版社, 1998: 1-2.
[9] Feist W D, Mueller W. Ultrasonic field modelling for complex shaped aerospace components[C]//Proceedings of the 12th World Conference on Non-Destructive Testing, 1989: 1206-1214.
[10] Shi Y W. New progress on non-destructive testing of aeronautical material and components[M]. Beijing: National Defence Industry Press, 2012: 21-63 (in Chinese). 史亦伟. 航空材料与制件无损检测技术新进展[M]. 北京: 国防工业出版社, 2012: 21-63.
[11] Dong D X, Xiong Y, Liu H N, et al. NDT method for the FGH96 and FGH97 superalloy powder disks[J]. Nondestructive Testing, 2012, 34(5): 76-80 (in Chinese). 董德秀, 熊瑛, 刘怀南, 等. FGH96、FGH97粉末盘的无损检测[J]. 无损检测, 2012, 34(5): 76-80.
[12] Feist W D, Mook G, Taylor S, et al. Non-destructive evaluation of manufacturing anomalies in aero-engine rotor disks[C]//16th World Conference on Non-destructive Testing, 2004.
[13] Abdul-Aziz A, Trudell J J, Baaklini G Y. Finite element design study of a bladed, flat rotating disk to simulate cracking in a typical turbine disk[J]. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, 2005: 298.
[14] Kryukov I I, Leont'ev S A, Platonov V S, et al. The experience of application of dye penetrant nondestructive testing in diagnostics of gas turbines[J]. Gas Turbine Technologies, 2006, 7: 10-12.
[15] Kryukov I I, Leont'ev S A, Platonov V S, et al. Testing of discs of turbine rotors of gas compressors with the dye penetrant nondestructive testing technique[J]. Russian Journal of Nondestructive Testing, 2008, 44(8): 542-547.
[16] Shmelev N G, Gorbatsevich M I, Kryukov I I, et al. Inspection of rotor disks of HPT and LPT of TK-10-4 gas-compressor units by the ultrasonic flaw detection method[J]. Russian Journal of Nondestructive Testing, 2012, 48(1): 15-22.
[17] Dubov A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-405.
[18] Dubov A A. Diagnostics of steam turbine disks using the metal magnetic memory method[J]. Thermal Engineering, 2010, 57(1): 16-21.
[19] Medina E A, Blodgett M P, Martin R W, et al. Nondestructive evaluation of dual microstructure turbine engine disk material[J]. AIP Conference Proceedings, 2011, 1335(1): 1144-1151.
[20] Guan X, He J, Rasselkorde E M, et al. Probabilistic fatigue life prediction and structural reliability evaluation of turbine rotors integrating an automated ultrasonic inspection system[J]. Journal of Nondestructive Evaluation, 2014, 33(1): 51-61.
[21] Du J H, Lv X D, Deng Q, et al. Progress in GH4169 alloy development[J]. Materials China, 2012, 31(12): 12-19 (in Chinese). 杜金辉, 吕旭东, 邓群, 等. GH4169合金研制进展[J]. 中国材料进展, 2012, 31(12): 12-19.
[22] Hu B, Yu R Q, Zou H C. Magnetic non-destructive testing method for thin-plate aluminum alloys[J]. NDT & E International, 2012, 47: 66-69.
[23] Ren J L, Lin J M. Electromagnetic nondestructive testing[M]. Beijing: Science Press, 2008: 223-229 (in Chinese). 任吉林, 林俊明. 电磁无损检测[M]. 北京: 科学出版社, 2008: 223-229.

Outlines

/