ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Challenge of control theory in the presence of high performance aircraft development
Received date: 2015-05-20
Revised date: 2015-05-29
Online published: 2015-06-03
Supported by
National Natural Science Foundation of China (61134004)
Considering the relevant effects of the flight attitude to the flight safety, the post stall maneuvering at high angle of attack region, airdropping heavy cargoes at super low-altitude, flight vehicles suffering catastrophe faults and UAV control methods are briefly reviewed in the paper, according to the thirty years flight test experiences. The approach of establishing flight model by handling stability flight test is presented as well as the useful flight model simplification assumptions for controller design. To enhance the robustness of flight controller against uncertainties, eight topics for robust control are suggested. The control problem for transport plane airdropping heavy cargoes at extremely low altitude is described, and the catastrophic models and tolerant control methods are presented with flight vehicles faults. Meanwhile, the importance of flight state measurements to flight control is issued, especially to UAV flight safety. Due to the inaccuracy measurement, certain flight control problem is addressed. Finally, studies of fixed wing or single rotor tactical unmanned aerial vehicles and other high level research vehicles are suggested for some university and institute to replace the study of four rotor steering aircraft with better stability.
SHI Zhongke . Challenge of control theory in the presence of high performance aircraft development[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(8) : 2717 -2734 . DOI: 10.7527/S1000-6893.2015.0155
[1] Phillips W H. Effect of rolling on longitudinal and directional stability, NASA TN-1627[R]. Washington, D.C.: NASA,1948.
[2] Mehra R K, Kessel W C, Cnrroll J V. Global stability and control analysis of aircraft at high angle of attack, annual technical report 1, ONR-CR215-248-(1)[R]. Cambridge: Scientific Systems Inc., 1977.
[3] Liefer R K. Fighter agility metrics, AD-A224-477[R]. Virginia: ASTIA, 1990.
[4] Jahnke C C. On the roll-coupling instabilities of high performance aircraft[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 1998, 356(1745): 2223-2239.
[5] Goman M G, Zagainov G I, Khramtsovsky A V. Application of bifurcation method to nonlinear flight dynamics problem[J]. Progress in Aerospace Sciences, 1997, 33(9-10): 539-586.
[6] Modi A, Ananthkrishnan N. Multiple attractors in inertia-coupled velocity-vector roll maneuvers of Airplanes[J]. Journal of Aircraft, 1998, 35(4): 659-661.
[7] Liebst B S, Nolan R C. Method for the prediction of the onset of wing rock[J]. Journal of Aircraft, 1994, 31(6): 1419-1424.
[8] Go T H, Ramnath R V. Analytical theory of three degree-of-freedom aircraft wing rock[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 657-664.
[9] Hsu C H, Lan C E. Theory of wing rock[J]. Journal of Aircraft, 1985, 22(10): 920-924.
[10] Ericsson L E. Wing rock analysis of slender delta wings, review and extension[J]. Journal of Aircraft, 1995, 32(6): 1221-1226.
[11] Arena A S J, Nelson R C. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing-rock motion,AIAA-89-3348-CP[R]. Reston: AIAA, 1989.
[12] Morris S L, Ward D T. A video-based experimental investigation of wing rock, AD-A218-244[R]. Virginia: ASTIA, 1989.
[13] Hall R M, Frate J H D. Interaction between forebody and wing vortices-a water-tunnel study, AFWAL-TM-85[R]. Riverside: Air Force Wright Aeronautical Lab (AFWAL), 1986.
[14] Takashi M, Shigeru Y, Yoshiaki N. The effect of leading-edge profile of self-induction oscillation of 45 degree delta wings, AIAA-2000-4004[R]. Reston: AIAA, 2000.
[15] Owens B O, McConnrll J K, Brandon J M, et al. Transonic free-to-roll analysis of the F/A-18E and F-35 configurations, AIAA-2004-5053[R]. Reston: AIAA, 2004.
[16] Elzebda J M, Mook D T, Nayfeh A H. Influence of pitching motion on subsonic wing rock of slender delta wings[J]. Journal of Aircraft, 1989, 26(6): 503-508.
[17] Elzedbda J M, Nayfeh A H, Mook D T. Development of an analytical model of wing rock for slender delta wings[J]. Journal of Aircraft, 1989, 26(8): 737-743.
[18] Nayfeh A H, Elzedbda J M, Mook D T. Analytical study of the subsonic wing-rock phenomenon for slender delta wings[J]. Journal of Aircraft, 1989, 26(9): 805-809.
[19] Konstadinopoulos P, Mook D T, Nayfeh A H. Subsonic wing rock of slender delta wings[J]. Journal of Aircraft, 1985, 22(3): 223-228.
[20] Elzebda J M, Mook D T, Nayfeh A H. The influence of an additional degree of freedom on subsonic wing rock of slender delta wings[C]//25th Aerospace Sciences Meeting, Reston: AIAA, 1987.
[21] Go T H, Ramnath R V. Analysis of the two-degree-of-freedom wing rock in advanced aircraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2): 324-333.
[22] Ross A J. Investigation of nonlinear motion experienced on a slender-wing research[J]. Journal of Aircraft, 1972, 9(9): 625-631.
[23] Go T H, Ramnath R V. An analytical approach to the aircraft wing rock dynamics, AIAA-2001-4426[R]. Reston: AIAA, 2001.
[24] Jahnke C C, Culick F E C. Application of dynamical systems theory to the high angle of attack dynamics of the F-14, AIAA-90-0221[R]. Reston: AIAA, 1990.
[25] Liebst B S, Nolan R C. A simplified wing rock prediction method, AIAA-93-3662-CP[R]. Reston: AIAA, 1993.
[26] Nho K, Agarwal R K. Application of fuzzy logic to wing rock motion control, AIAA-98-0497[R]. Reston: AIAA, 1998.
[27] Tewari A. Nonlinear optimal control of wing rock including yawing motion, AIAA-2000-4251[R]. Reston: AIAA, 2000.
[28] Joshi S V, Sreenatha A G, Chandrasekhar J. Suppression of wing rock of slender delta wings using a single neuron controller[J]. IEEE Transactions on Control Systems Technology, 1998, 6(5): 671-677.
[29] Shue S P, Agarwal R K. Nonlinear H∞ method for control of wing rock motions[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 60-68.
[30] Cao C Y, Hovakimyan N. Application of L1 adaptive controller to wing rock, AIAA-2006-6426[R]. Reston: AIAA, 2006.
[31] Pietrucha J, Zlocka M, Sibilski K, et al. Comparative analysis of wing rock control, AIAA-2009-56[R]. Reston: AIAA, 2009.
[32] Liebst B S, Witt B R D. Wing rock suppression in the F-15 aircraft, AIAA-97-3719[R]. Reston: AIAA, 1997.
[33] Garrard W L, Jordan J M. Design of nonlinear automatic flight control systems[J]. Automatica, 1977, 13(5): 497-505.
[34] Montgomery R C, Moul M T. Analysis of deep-stall characteristic of T-tailed aircraft configuration and some recovery procedures[J].Journal of Aircraft, 1966, 3(6): 562-566
[35] Powers B G. A Parametric study of factors influencing the deep-stall pitch-up characteristics of T-tail transport aircraft. NASA TN D-3370[R]. Washington, D.C.: NASA, 1966.
[36] Lee C S, Pang W W, Srigrarom S. Classification of aircraft by abnormal behavior of lift curves at low reynolds number, AIAA-2006-3179[R]. Reston: AIAA, 2006.
[37] Meznarsie V F, Gross L W. Experimental investigation of a wing with control midspan flow separation[J]. Journal of Aircraft, 1982, 19(6): 435-441.
[38] Gregory N, Quincey V G, Hall D J. Progress report on observation of three-dimensional flow patterns obtained during stall development on aerofoils and on the problem of measuring two-dimensional characteristics, NPL Aero Report-1309[R]. Middlesex: NPL, 1970.
[39] Mehra R K, Carroll J V. Bifurcation analysis of aircraft high angle-of-attack flight dynamics, AIAA-1980-1599[R]. Reston: AIAA, 1980.
[40] Carroll J V, Mehra R K. Bifurcation analysis of nonlinear aircraft dynamics[J]. Journal of Guidance, Control, and Dynamics, 1982, 5(5): 529-536.
[41] Chen Y S, Liung A Y T. Bifucation and chaos in engineering[M]. New York: Springer, 1998: 154-261.
[42] Sibilski K. Problems of manoeuvring at post-critical angels of attack continuation and bifurcation methods approach, AIAA-2003-0395[R]. Reston: AIAA, 2003.
[43] Liaw D C, Song C C. Analysis of longitudinal flight dynamics: a bifurcation-theoretic approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 24(1): 109-116.
[44] Cochran J E J, Ho C S. Stability of aircraft motion in critical cases[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(4): 272-279.
[45] Gates O B, Minka K. Note on a criterion for severity of roll-induced instability[J]. Journal of the Aerospace Sciences, 1959, 26(5): 287-290.
[46] Young J W, Schy A A, Johnson K G. Pseudo steady-state analysis of nonlinear aircraft maneuvers, NASA-TP-1758-C1[R]. Washington, D.C.: NASA, 1980.
[47] Thomas S, Bajpai G, Kwatny H, et al. Nonlinear dynamics, stability and bifurcation in aircraft: simulation and analysis tools, AIAA-2005-6428[R]. Reston: AIAA, 2005.
[48] Guicheteau P H. Bifurcations theory in flight dynamics an application to a real combat aircraft, ONERA-TAP-90-116[R]. Sigle: INIST, 1990.
[49] Avanzini G, Matteis G D. Bifurcation analysis of a highly augmented aircraft model[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 754-759.
[50] Marusak A, Pietrucha J, Sibilski K. Prediction of aircraft critical flight regimes using continuation and bifurcation methods, AIAA-2000-0976[R]. Reston: AIAA, 2000.
[51] Lina L J, Moul M T. A simulator study of T-tail aircraft in deep stall conditions, AIAA-1965-0781[R]. Reston: AIAA, 1965.
[52] Beh H, Bunt R V D,Fischer B. High angle of attack approach and landing control law design for the X-31A, AIAA-2002-0247[R]. Reston: AIAA, 2002.
[53] Atesoglu Ö, Özgören M K. High-α flight maneuverability enhancement of a twin engine fighter-bomber aircraft for air combat superiority using thrust-vectoring control, AIAA-2006-6056[R]. Reston: AIAA, 2006.
[54] Jouannet C, Krus P. Modelling of high angle of attack aerodynamic state-space approach, AIAA-2006-3845[R]. Reston: AIAA, 2006.
[55] Forsythe J R, Strang W Z, Squires K D. Six degree of freedom computation of the f-15e entering a spin, AIAA-2006-858[R]. Reston: AIAA, 2006.
[56] Michal T, Babcock D, Oser M, et al. BCFD unstructured-grid predictions on the F-16 XL (CAWAPI) aircraft, AIAA-2007-679[R]. Reston: AIAA, 2007.
[57] Green B E. Computational prediction of nose-down control for the pre-production F/A-18E at high angle of attack[J]. Journal of Aircraft, 2008, 45(5): 1661-1668.
[58] Park M Y, Park H U, Park S H, et al. Computational investigation of asymmetric vortical flow characteristics at high angle of attack, AIAA-2007-6727[R]. Reston: AIAA, 2007.
[59] Roberts L T, Strom T H. All-axis control of aircraft in deep stall: United States Patent, US 4099687[P]. 1978-07-11.
[60] Goman M, Fedulova E, Khramtsovsky A V. Maximum stability region design for unstable aircraft with control constrains, AIAA-1996-3910[R]. Reston: AIAA, 1996.
[61] Lowenberg M H. Bifucation analysis as a tool for post-departure stability enhancement, AIAA-1997-3716[R]. Reston: AIAA, 1997.
[62] Littleboy D M, Smith P R. Using bifurcation method to aid nonlinear dynamic inversion control law design[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(4): 632-638.
[63] Gao H, Wang Z G, Zhang S G. A study of wing rock[J]. Flight Dynamics, 1989(3): 1-10 (in Chinese). 高浩, 王忠俊, 张曙光. 机翼摇晃运动研究[J]. 飞行力学, 1989(3): 1-10.
[64] Chen Y L, Shen H L, Liu C. Prediction and suppression of wing-rock[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 276-280 (in Chinese). 陈永亮, 沈宏良, 刘昶. 机翼摇晃预测与抑制[J]. 航空学报, 2005, 26(3): 276-280.
[65] Zhou Y X, Liu C, Yin J H. The simulation study of deep-stall characteristics for RSS airplane[J]. Flight Dynamics, 1996, 14(4): 19-24 (in Chinese). 周欲晓, 刘昶, 尹江辉. RSS飞机深失速仿真研究[J]. 飞行力学, 1996, 14(4): 19-24.
[66] Yu Y J,Yin J H, Liu C. Analysis of deep stall corridor characteristics for RSS aircraft[J]. Flight Dynamics, 1998, 16(2): 1-6 (in Chinese). 余勇军, 尹江辉, 刘昶. RSS飞机深失速走廊特性分析[J]. 飞行力学, 1998, 16(2): 1-6.
[67] Zheng X F, Liu C, Shi Z W. Study of deep-stall characteristics of T-tailed aircraft[J]. Flight Dynamics, 1996, 14(3): 39-43 (in Chinese). 郑贤芬, 刘昶, 史志伟. "T"型尾翼飞机的深失速特性研究[J]. 飞行力学, 1996, 14(3): 39-43.
[68] Cheng Z Y. Analysis of stall behavior for Y7-200B aircraft[J]. Flight Dynamics, 1993, 11(2): 64-72 (in Chinese). 程泽荫. Y7-200B飞机失速特性分析[J]. 飞行力学, 1993, 11(2): 64-72.
[69] Cheng Z Y. The study of control and stability characteristics for Y7-200B/A aircraft[J]. Flight Dynamics, 1995, 13(4): 56-64 (in Chinese). 程泽荫. Y7-200B/A飞机操稳特性分析[J]. 飞行力学, 1995, 13(4): 56-64.
[70] Wang D H, Su B, Wang Z G. Analysis of global stability and nonlinear control for a fighter configuration[J]. Acta Aerodynamica Sinica, 2002, 20(2): 192-197 (in Chinese). 王大海, 苏彬, 王忠俊. 飞机的全局稳定性分析和非线性控制[J]. 空气动力学学报, 2002, 20(2): 192-197.
[71] Li K, Fang Z P. High angle-of-attack control law design based on global stability analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(6): 516-519 (in Chinese). 黎康, 方振平. 基于全局稳定性分析的大迎角飞控系统设计[J]. 北京航空航天大学学报, 2004, 30(6): 516-519.
[72] Li K, Fang Z P. Application of bifurcation analysis to aircraft nonlinear dynamics[J]. Flight Dynamics, 2003, 21(4): 5-8 (in Chinese). 黎康, 方振平. 分叉分析在飞机非线性动力学中的应用[J]. 飞行力学, 2003, 21(4): 5-8.
[73] Zanotti A, Nilifard R, Gibertini G, et al. Assessment of 2D/3D numerical modeling for deep dynamic stall experiments[J]. Journal of Fluids and Structures, 2014, 51: 97-115.
[74] Wang S Y, Ingham D B, Ma L, et al. Turbulence modeling of deep dynamic stall at relatively low Reynolds number[J]. Journal of Fluids and Structures, 2012, 33: 191-209.
[75] Visbal M R. Numerical investigation of deep dynamic stall of a plunging airfoil[J]. AIAA Journal, 2011, 49(10): 2152-2170
[76] Shi Z K, Fan L. Bifurcation analysis of polynomial models for longitudinal motion at high angle of attack[J]. Chinese Journal of Aeronautics, 2013, 26(1): 151-160.
[77] Fan L, Shi Z K. Stability and bifurcation analysis of nonlinear model for longitudinal motion with time delay[J]. Control and Decision, 2013, 28(7): 985-990 (in Chinese). 范丽, 史忠科. 具有时滞的非线性纵向飞行模型稳定性和分支分析[J]. 控制与决策, 2013, 28(7): 985-990.
[78] Xin Q, Shi Z K. Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack[J]. Chinese Journal of Aeronautics, 2015, 28(1): 250-259.
[79] Shi Z K, Wu F X. Robust identification method for nonlinear model structures and its application to high-performance aircraft[J]. International Journal of Systems Science, 2013, 44(6): 1040-1051.
[80] Zhang H Y, Shi Z K.Variable structure control of catastrophic course in airdropping heavy cargo[J]. Chinese Journal of Aeronautics, 2009, 22(5): 520-527.
[81] Chen J, Shi Z K Aircraft modeling and simulation with cargo moving inside[J]. Chinese Journal of Aeronautics, 2009, 22(2): 191-197.
[82] Chen J, Shi Z K. Flight controller design of transport airdrop[J]. Chinese Journal of Aeronautics, 2011, 24(5): 600-606.
[83] Feng Y L, Shi Z K, Tang W. Dynamics modeling and control of large transport aircraft in heavy cargo extraction[J]. Journal of Control Theory and Applications, 2011, 9(2): 231-236.
[84] Xin Q, Shi Z K. Design of three dimensional nonlinear controller for transport aircraft airdropping heavy cargoes at extremely low-altitude under cross wind[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1941-1956 (in Chinese). 辛琪, 史忠科. 运输机超低空重装空投抗侧风三维非线性控制律设计[J]. 航空学报, 2014, 35(7): 1941-1956.
[85] Hancock G J. Theory of optimum aerodynamic shapes[J]. Nature, 1966, 102(5031): 53-54.
[86] Gruschka H D, Borchers I U, Coble J G. Aerodynamic noise produced by a gliding owl[J]. Nature, 1971, 233(5319): 409-411.
[87] Christopher J.C. Aerodynamic properties of insert wing section and a smooth aerofoil compared[J]. Nature, 1975, 258(13): 141-142.
[88] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954-1960.
[89] Fry S N, Sayaman R, Dickinson M H. The aerodynamics of free-flight maneuvers in drosophila[J]. Science, 2003, 300(5618): 495-498.
[90] Dial K P. Wing-assisted incline running and the evolution of flight[J]. Science, 2003, 299(5605): 402-404.
[91] Muijres F T. Leading-edge vortex improves lift in slow-flying bats[J]. Science, 2008, 319(5867): 1250-1253.
[92] Papatheou E, Manson G, Barthorpe R J, et al. The use of pseudo-faults for damage location in SHM: An experimental investigation on a piper tomahawk aircraft wing[J]. Journal of Sound and Vibration, 2014, 333(3): 971-990.
[93] Lee S, Park W, Jung S. Fault detection of aircraft system with random forest algorithm and similarity measure[J]. The Scientific World Journal, 2014. DOI: http://dx.doi.org/10.1155/2014/727359 (in Press).
[94] Martinez A, Sanchez L, Couso I. Interval-valued blind source separation applied to ai-based prognostic fault detection of aircraft engines[J]. Journal of Multiple-Valued Logic and Soft Computing, 2014, 22(1-2): 151-166.
[95] Liu X, Liu Z. A hybrid approach for aircraft fault diagnosis based on fault inference and fault identification[J]. Aeronautical Journal, 2014, 118(1199): 81-97.
[96] Nayebpanah N, Rodrigues L, Zhang Y M. Fault tolerant control for partial loss of control authority in aircraft using piecewise affine slab models[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2013, 350(9): 2494-2508.
[97] Loza A F D, Cieslak J, Henry D, et al. Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft[J]. IET Control Theory and Applications, 2015, 9(4SI): 598-607.
[98] Yaramasu A, Cao Y N, Liu G J, et al. Aircraft electric system intermittent arc fault detection and location[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 40-51.
[99] Shi Z K. Aircraft fault diagnosis and tolerant control based on three-dimensional motion model, China, ZL201310095792.0[P]. 2015-04-08 (in Chinese). 史忠科. 飞行器三维运动故障诊断和容错控制方法, 中国: ZL201310095792.0[P]. 2015-04-08.
[100] Madany Y M, Elkamchouchi H M, Ahmed M M. Modelling and simulation of robust navigation for unmanned air systems (UASs) based on integration of multiple sensors fusion architecture[C]//UKSim-AMSS 7th European Modelling Symposium on Computer Modelling and Simulation, 2013: 719-724.
[101] Xu Y, Sun W, Li P. A Miniature integrated navigation system for rotary-wing unmanned aerial vehicles[J]. International Journal of Aerospace Engineering, 2014: 748940.
[102] Figueiroa M, Moutinho A, Azinheira J R, et al. Attitude estimation in SO (3): a comparative UAV case study[C]//IEEE International Conference on Autonomous Robot Systems and Competitions. Piscataway, NJ: IEEE Press, 2014: 79-84.
[103] Grelsson B, Felsberg M. Probabilistic hough voting for attitude estimation from aerial fisheye images[J]. Lecture Notes in Computer Science, 2013: 478-488.
[104] Yigit H, Yilmaz G. Development of a GPU accelerated terrain referenced UAV localization and navigation algorithm[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1-4): 477-489.
[105] Chee K Y, Zhong Z W. Control, navigation and collision avoidance for an unmanned aerial vehicle[J]. Sensors and Actuators A: Physical, 2013, 190(1): 66-76.
[106] Zhang L, Shi Z, Zhong Y. Attitude estimation of 3-DOF lab helicopter based on optical flow[C]//33rd Chinese Control Conference, 2014: 8536-8541.
[107] Zsedrovits T, Bauer P, Zarandy A, et al. Error analysis of algorithms for camera rotation calculation in GPS/IMU/camera fusion for UAV sense and avoid systems[C]//International Conference on Unmanned Aircraft Systems, 2014: 864-875.
[108] Ding Y R, Hsiao F B. Application of a single-antenna gps-based attitude estimation on the stability control of a small unmanned aerial vehicle[J]. Journal of Aerospace Engineering, 2013, 26(4): 768-785.
[109] Marinho M A M, Ferreira R S J, Costa J P C L D, et al. Antenna array based positioning scheme for unmanned aerial vehicles[C]//17th International ITG Workshop on Smart Antennas, 2013: 1-6.
[110] Liu K, Da Costa J P C L D, So H C, et al. 3-D unitary ESPRIT: Accurate attitude estimation for unmanned aerial vehicles with a hexagon-shaped ESPAR array[J]. Digital Signal Processing, 2013, 23(3): 701-711.
/
〈 | 〉 |