Electronics and Control

An imaging algorithm for sliding spotlight SAR using subaperture with line-of-sight motion compensation

  • YANG Mingdong ,
  • ZHU Daiyin
Expand
  • Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-03-17

  Revised date: 2015-05-29

  Online published: 2015-06-03

Supported by

National Natural Science Foundation of China(61301210);Aeronautical Science Foundation of China(20142052021);Natural Science Foundation of Jiangsu Province(BK20130815);Jiangsu Planned Projects for Postdoctoral Research Funds(1301027B);A Project Founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

Sliding spotlight synthetic aperture radar(SAR) is a rising imaging mode, whose azimuth resolution is higher and imaged area is greater. When processing data, two key problems should be considered. Firstly, system's pulse repetition frequency(PRF) is always insufficient, which makes the azimuth signal folding. Secondly, the effect of motion error enhances because of longer synthetic aperture, consequently the accuracy of motion compensation(MOCO) should be increased. This paper presents a modified high-resolution imaging scheme based on subaperture. Subaperture method is used to overcome the problem that PRF is insufficient. Meanwhile, processing of subaperture data chooses Omega-K algorithm with line-of-sight(LOS) motion compensation to implement high-precision motion compensation, improving focused quality. The presented algorithm can attain 0.1 m azimuth resolution and has the value of practice. Simulations with point targets and processing of real data are used to confirm the validity of the proposed algorithm.

Cite this article

YANG Mingdong , ZHU Daiyin . An imaging algorithm for sliding spotlight SAR using subaperture with line-of-sight motion compensation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 984 -996 . DOI: 10.7527/S1000-6893.2015.0159

References

[1] LANARI R, ZOFFOLI S, SANSOSTI E, et al. New approach for hybrid strip-map/spotlight SAR data focusing[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(6):363-372.
[2] BRENNER A R. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40% relative bandwidth in X-band[C]//2012 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Piscataway, NJ:IEEE Press, 2012:7397-7400.
[3] MITTERMAYER J, WOLLSTADT S, PRATS P, et al. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3695-3706.
[4] MOREIRA A, MITTERMAYER J, SCHEIBER R. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and ScanSAR imaging modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5):1123-1136.
[5] MITTERMAYER J, MOREIRA A, LOFFELD O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2198-2214.
[6] LANARI R, TESAURO M, SANSOSTI E, et al. Spotlight SAR data focusing based on a two-step processing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9):1993-2004.
[7] ZHU D Y, YE S H, ZHU Z D. Polar format algorithm using chirp scaling for spotlight SAR image formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4):1433-1448.
[8] CAFFORIO C, PRATI C, ROCCA F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2):194-206.
[9] MITTERMAYER J, LORD R, BORNER E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]//2003 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Piscataway, NJ:IEEE Press, 2003:1462-1464.
[10] PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2):770-780.
[11] BELCHER D P, BAKER C J. High resolution processing of hybrid strip-map/spotlight mode SAR[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(6):366-374.
[12] WANG R, LOFFELD O, NIES H, et al. Focusing spaceborne/airborne hybrid bistatic SAR data using wavenumber-domain algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2275-2283.
[13] SUN G C, XING M D, XIA X G, et al. Beam steering SAR data processing by a generalized PFA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4366-4377.
[14] SUN G C, XING M D, WANG Y, et al. Sliding spotlight and TOPS SAR data processing without subaperture[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6):1036-1040.
[15] XU W, DENG Y K, HUANG P P, et al. Full-aperture SAR data focusing in the spaceborne squinted sliding-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(8):4596-4607.
[16] WU Y F, SUN G C, XIA X G, et al. An azimuth frequency non-linear chirp scaling(FNCS) algorithm for TOPS SAR imaging with high squint angle[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1):213-221.
[17] HE F, CHEN Q, DONG Z, et al. Processing of ultrahigh-resolution spaceborne sliding spotlight SAR data on curved orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2):819-839.
[18] 毛新华, 朱岱寅, 朱兆达. 复杂航迹和起伏地形条件下机载聚束SAR空变运动补偿[J]. 航空学报, 2012, 33(4):744-754. MAO X H, ZHU D Y, ZHU Z D. Space-variant motion compensation for airborne spotlight SAR under complicated flight path and rugged terrain[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):744-754(in Chinese).
[19] 宋伟, 朱岱寅, 叶少华. 基于数值计算的机载SAR空变运动补偿算法[J]. 航空学报, 2015, 36(2):625-632. SONG W, ZHU D Y, YE S H. Airborne SAR space-variant motion compensation algorithm based on numerical calculation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):625-632(in Chinese).
[20] DING Z G, LIU L S, ZENG T, et al. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4378-4387.
[21] 曾乐天, 邢孟道, 陈士超. 基于窄波束和平地假设的运动补偿方向研究[J]. 电子与信息学报, 2014, 36(10):2464-2468. ZENG L T, XING M D, CHEN S C. The research on the direction of motion compensation according to the narrow beam and flat earth hypothesis[J]. Journal of Electronics & Information Technology, 2014, 36(10):2464-2468(in Chinese).
[22] CUMMING I G, WONG F H. Digital processing of synthetic aperture radar:Algorithms and implementation[M]. Boston:Artech House, 2005:176-177.
[23] FORNARO G. Trajectory deviations in airborne SAR:Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):997-1009.

Outlines

/