Material Engineering and Mechanical Manufacturing

Effects of tows tension on automated fiber placement process

  • ZHAO Cong ,
  • XIAO Jun ,
  • WANG Xianfeng ,
  • LI Junfei ,
  • HUANG Wei
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-03-26

  Revised date: 2015-05-26

  Online published: 2015-06-01

Supported by

National Basic Research Program of China (2014CB046501);Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

To improve the forming quality of automated fiber placement process, the effects of tows tension on automated fiber placement process are studied by tows feeding and layup experiments. The results of tows feeding experiments turn out that the tows feeding precision and reliability is affected significantly by tension. In order to guarantee tows feeding precision and reliability, the value of tows tension should be kept uniformly and in a proper range. The layup experiment shows that inappropriate tows tension definitely reduces the process quality. By force analysis of the prepreg tow, the influences of tows tension on different layup conditions are discussed, the factors which influenced the proper value range of tows tension are discussed, and the formula of tows tension is derived and verified by layup experiments. Tows tension is one of the important parameter of automated fiber placement process. The value of tows tension should be promptly adjusted with mould surface, trajectory and other processing parameters to improve layup quality.

Cite this article

ZHAO Cong , XIAO Jun , WANG Xianfeng , LI Junfei , HUANG Wei . Effects of tows tension on automated fiber placement process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(4) : 1384 -1392 . DOI: 10.7527/S1000-6893.2015.0151

References

[1] LUKASZEWICZ D J, WARD C, POTTER K D. The engineering aspects of automated prepreg layup:History, present and future[J]. Composites Part B:Engineering, 2012, 43(3):997-1009.
[2] 杨会芳, 李中凯, 金辉. 大型复合材料丝束铺放机关键部件结构分析[J]. 航空制造技术, 2010(22):72-75. YANG H F, LI Z K, JIN H. Analysis of key component of large composites fiber placement machine[J]. Aeronautical Manufacturing Technology, 2010(22):72-75(in Chinese).
[3] 刘亚威. F-35战斗机进气道的自动化制造[J]. 国防制造技术, 2011(4):32-35. LIU Y W. Application of automatic process in manufacture of F-35 fighter's inlet[J]. Defense Manufacturing Technology, 2011(4):32-35(in Chinese).
[4] 肖军. 航空复合材料自动铺丝技术发展现状[J]. 国际航空, 2011(12):70-72. XIAO J. Application of automatic fiber placement in manufacture of aeronautical composite[J]. International Aviation, 2011(12):70-72(in Chinese).
[5] SHIRINZADEH B, ALICI G, FOONG C W, et al. Fabrication process of open surfaces by robotic fiber placement[J]. Robotics and Computer Integrated Manufacturing, 2004, 20(1):17-28.
[6] LUKASZEWICZ D J. Optimization of high-speed automated layup of thermoset carbon fiber preimpregnates[D]. Bristol:University of Bristol, 2011:41-50.
[7] 文琼华, 王显峰, 何思敏, 等. 温度对预浸料铺放效果的影响[J]. 航空学报, 2011, 32(9):1740-1745. WEN Q H, WANG X F, HE S M, et al. Influence of temperature on placement effect of prepreg[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1740-1745(in Chinese).
[8] 段玉岗, 闫晓丰, 李超, 等. 压辊材料及形状对纤维铺放压紧效果的影响[J]. 航空学报, 2014, 35(4):1173-1180. DUAN Y G, YAN X F, LI C, et al. Effect of material and shape of compaction roller on the voids and compaction uniformity in fiber placement process[J]. Acta Aeronautica et Astronautica, 2014, 35(4):1173-1180(in Chinese).
[9] LUKASZEWICZ D J, WEAVER P M, POTTER K. The impact of processing conditions on the final part quality in automated tape deposition technologies[C]//29th SAMPE Europe International Conference. Paris:SAMPE Europe, 2009:236-241.
[10] LUKASZEWICZ D J, WEAVER P M, POTTER K. An empirical model for the automated deposition of thermoset composite[C]//ACS-24th technical conference. Delaware:University of Delaware, 2009:126-130.
[11] AIZED T, SHIRINZADEH B. Robotic fiber placement process analysis and optimization using response surface method[J]. International Journal of Advanced Manufacture and Technology, 2011, 55(1-4):393-404.
[12] 段玉岗, 刘芬芬, 陈耀, 等. 纤维铺放压紧力及预浸带加热温度对复合材料力学性能的影响[J]. 复合材料学报, 2012, 29(4):148-156. DUAN Y G, LIU F F, CHEN Y, et al. Effects of compaction force and heating temperature of prepreg on composite mechanical properties during fiber placement process[J]. Acta Materiae Compositae Sinica, 2012, 29(4):148-156(in Chinese).
[13] HASSAN N, THOMPSON J E, BATRA R C, et al. A heat transfer analysis of the fiber placement composite manufacturing process[J]. Journal of Reinforced Plastics and Composites, 2005, 24(8):869-888.
[14] LI Y H, FU H Y, SHAO Z X. The influence of preheating on automated fiber placement speed[J]. Advanced Materials Research, 2011, 213:136-142.
[15] 林胜. 自动铺带机/铺丝机(ATL/AFP)-现代大型飞机制造的关键设备(上)[J]. 世界制造技术与装备市场, 2009(4):84-89. LIN S. ATL/AFP-the key machine for manufacturing of modern large airplane (A)[J]. World Manufacturing Engineering & Market, 2009(4):84-89(in Chinese).
[16] 孔燕. 八通道自动铺丝张力测控系统方案设计[D]. 南京:南京航空航天大学, 2007:21-40. KONG Y. The tension testing and control system design of 8-channel automated tow placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:21-40(in Chinese).
[17] 邵忠喜. 纤维铺放装置及其铺放关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2010:31-49. SHAO Z X. Research on key technology of fiber placement machine[D]. Harbin:Harbin Institute of Technology, 2010:31-49(in Chinese).
[18] 刘雄亚, 谢怀勤. 复合材料工艺及设计[M]. 武汉:武汉理工大学出版社, 2010:165-167. LIU X Y, XIE H Q. Process and equipment of composites[M]. Wuhan:Wuhan University of Technology Press, 2010:165-167(in Chinese).
[19] 王斌, 丘哲明, 刘爱华, 等. 高性能PBO纤维复合材料成型工艺参数研究[J]. 航空学报, 2004, 25(2):192-196. WAN B, QIU Z M, LIU A H, et al. Study of manufacture processing parameter of high performance PBO fiber composite[J]. Acta Aeroautica et Astronautica Sinica, 2004, 25(2):192-196(in Chinese).
[20] MERTINY P, ELLYIN F. Influence of the filament winding tension on physical and mechanical properties of reinforced composites[J]. Composites Part A:Applied Science and Manufacturing, 2002, 33(12):1615-1622.
[21] 梅向明, 黄敬之. 微分几何[M]. 北京:高等教育出版社, 2005:145-146. MEI X M, HUANG J Z. Differential geometry[M]. Beijing:Higher Education Press, 2005:145-146(in Chinese).
[22] CHAO T, CHUNK Z, DAVID A J, et al. The effect of inclusion waviness and waviness distribution on elastic properties of fiber reinforced composites[J]. Composites Part B:Engineering, 2011, 42(1):62-70.
[23] ARAO Y, KOYANAGI J, UTSUNOMIYA S, et al. Effect of ply angle misalignment on out-of-plane deformation of symmetrical cross-ply CFRP laminates:Accuracy of the ply angle alignment[J]. Composite Structure, 2011, 93(4):1225-1230.
[24] GUTOWSKI T G, BONHOMME L. The mechanics of prepreg conformance[J]. Journal of Composite Materials, 1988, 22(3):204-223.
[25] 陆楠楠, 肖军, 齐俊伟, 等. 面向自动铺放的预浸料动态黏性实验研究[J]. 航空学报, 2014, 35(1):279-286. LU N N, XIAO J, QI J W, et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):279-286(in Chinese).

Outlines

/