Electronics and Control

A nonlinear fault tolerant flight control method against structural damage

  • WANG Qian ,
  • LI Qing ,
  • CHENG Nong ,
  • SONG Jingyan
Expand
  • Department of Automation, Tsinghua University, Beijing 100084, China

Received date: 2015-02-27

  Revised date: 2015-05-19

  Online published: 2015-05-27

Supported by

National Natural Science Foundation of China(61174168);Aeronautical Science Foundation of China(20100758002,20128058006)

Abstract

Structural damage can affect system static stability and control precision by changing aircraft aerodynamic parameters. A nonlinear fault tolerant flight control scheme against aircraft structural damage is presented, which implements the adaptive backstepping control method with a second-order command filter. The fault tolerant control is applied to a multi-input nonlinear aircraft model. In order to compensate the influence from structural damage, the aircraft aerodynamic parameters are estimated on-line and the controller is adaptively regulated. A command filter is employed to avoid the complex derivative computation in the backstepping method. The stability of the closed-loop system with the command filter is proved. The upper bounds of control tracking errors and the lower bounds of the frequency parameters in the command filters are also analytically presented. The proposed nonlinear fault tolerant control method is verified by a simulation of a large commercial aircraft with loss of the vertical tail.

Cite this article

WANG Qian , LI Qing , CHENG Nong , SONG Jingyan . A nonlinear fault tolerant flight control method against structural damage[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 637 -647 . DOI: 10.7527/S1000-6893.2015.0139

References

[1] 肖冰, 胡庆雷, 霍星, 等. 执行器故障的挠性航天器姿态滑模容错控制[J]. 航空学报, 2011, 32(10):1869-1878. XIAO B, HU Q L, HUO X, et al. Sliding mode fault tolerant attitude control for flexible spacecraft under actuator fault[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1869-1878(in Chinese).
[2] 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014, 35(1):249-258. HU Q L, JIANG B Y, SHI Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):249-258(in Chinese).
[3] ALWI H, EDWARDS C. Fault tolerant control using sliding modes with on-line control allocation[J]. Automatica, 2008, 44(7):1859-1866.
[4] 王辉, 胡庆雷, 石忠, 等. 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015, 36(6):1933-1939. WANG H, HU Q L, SHI Z, et al. Backstepping based finite-time fault tolerant attitude tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1933-1939(in Chinese).
[5] 胡庆雷, 张爱华, 李波. 推力器故障的刚体航天器自适应变结构容错控制[J]. 航空学报, 2013, 34(4):909-918. HU Q L, ZHANG A H, LI B. Adaptive variable structure fault tolerant control of rigid spacecraft under thrust faults[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):909-918(in Chinese).
[6] HALLOUZI R, VERHAEGEN M. Fault-tolerant subspace predictive control applied to a Boeing 747 model[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):873-883.
[7] 李卫琪, 陈宗基. 非线性飞机对象操纵面故障的控制律重构[J]. 北京航空航天大学学报, 2003, 29(5):428-433. LI W Q, CHEN Z J. Control law reconfiguration under control surface failure for nonlinear aircraft dynamic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(5):428-433(in Chinese).
[8] 钟友武, 杨凌宇, 申功璋. 多操纵面飞机综合重构飞行控制方法[J]. 北京航空航天大学学报, 2009, 35(11):1320-1324. ZHONG Y W, YANG L Y, SHEN G Z. Integrated reconfigurable flight control method for aircraft with multiple control effectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11):1320-1324(in Chinese).
[9] 黄成涛, 王立新. 多操纵面飞翼构型飞机舵面故障在线诊断方法[J]. 航空学报, 2011, 32(1):56-66. HUANG C T, WANG L X. On-line fault diagnosis for control surfaces of multi-control effector flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):56-66(in Chinese).
[10] SHAH G H, HILL M A. Flight dynamics modeling and simulation of a damaged transport aircraft[C]//Proceedings of AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2012.
[11] EDWARDS C, LOMBAERTS, SMAILI H. Fault tolerant flight control-A benchmark challenge. Lecture notes in control and information science 399(LNCIS 399)[M]. Berlin:Springer-Verlag, 2010.
[12] ZHAO J, JIANG B, SHI P, et al. Fault tolerant control for damaged aircraft based on sliding mode control scheme[J]. International Journal of Innovative Computing, Information and Control, 2014, 10(1):293-302.
[13] LI X B, LIU H T. A passive fault tolerant flight control for maximum allowable vertical tail damage aircraft[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134:031006-1-15.
[14] GUO J X, TAO G, LIU Y. Multivariable adaptive control of NASA generic transport aircraft model with damage[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5):1495-1506.
[15] ZHAO J, JIANG B, HE Z, et al. Modeling and fault tolerant control for near space vehicles with vertical tail loss[J]. IET Control Theory and Applications, 2014, 8(9):718-727.
[16] FARRELL J, SHARMA M, POLYCARPOU M. Backstepping-based flight control with adaptive function approximation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6):1089-1102.
[17] SONNEVELDT L, CHU Q P, MULDER J A. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336.
[18] FARRELL J A, POLYCARPOU M, SHARMA M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1391-1395.
[19] DONG W J, FARRELL J A, POLYCARPOU M, et al. Command filtered adaptive backstepping[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3):566-580.
[20] KHALIL H K. Nonlinear systems[M]. 3rd ed. New Jersey:Prentice Hall, 2002:323.

Outlines

/