ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Efficient design algorithm of low PAR waveform for wideband cognitive radar
Received date: 2015-01-27
Revised date: 2015-05-05
Online published: 2015-05-25
Supported by
National Natural Science Foundation of China(61201379);Anhui Provincial Natural Science Foundation(1208085QF103,1608085MF123)
Transmit waveform design is a key technique in wideband cognitive radar. In order to improve the detection performance of range spread targets for wideband cognitive radar system, a target detection model is established. Then the detection performance associated with the signal model is analyzed. Afterward, the design method of low peak-to-average power ratio(PAR) waveform is studied based on maximizing signal-to-interference-plus-noise ratio(SINR). In the development of the proposed algorithm, the original waveform optimization problem is tackled by considering its equivalent form, which is a joint design problem of low PAR waveform and receiving filter. Based on the idea of cyclic optimization, an efficient design method for low PAR waveform is proposed. The output SINR of the designed constant envelope waveform is similar to that of the existing gradient descent method and convex optimization method. However, the proposed algorithm is much easier to implement and has considerably lower computational complexity. The effectiveness of the proposed algorithm is verified by the numerical simulations.
TANG Bo . Efficient design algorithm of low PAR waveform for wideband cognitive radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 688 -694 . DOI: 10.7527/S1000-6893.2015.0125
[1] HAYKIN S. Cognitive radar:A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1):30-40.
[2] GUERCI J R. Cognitive radar:The knowledge-aided fully adaptive approach[M]. Norwood, MA:Artech House, 2010:13-30.
[3] HE H, LI J, STOICA P. Waveform design for active sensing systems:A computational approach[M]. Cambridge:Cambridge University Press, 2012:1-14.
[4] SOLTANALIAN M, TANG B, LI J, et al. Joint design of the receive filter and transmit sequence for active sensing[J]. IEEE Signal Processing Letters, 2013, 20(5):423-426.
[5] AUBRY A, DE MAIO A, PIEZZO M, et al. Cognitive design of the receive filter and transmitted phase code in reverberating environment[J]. IET Radar, Sonar & Navigation, 2012, 6(9):822-833.
[6] AUBRY A, DE MAIO A, JIANG B, et al. Ambiguity function shaping for cognitive radar via complex quartic optimization[J]. IEEE Transactions on Signal Processing, 2013, 61(22):5603-5619.
[7] TANG B, TANG J, PENG Y. Waveform optimization for MIMO radar in colored noise:Further results for estimation-oriented criteria[J]. IEEE Transactions on Signal Processing, 2012, 60(3):1517-1522.
[8] WANG H, SHI L, WANG Y, et al. A novel target detection approach based on adaptive radar waveform design[J]. Chinese Journal of Aeronautics, 2013, 26(1):194-200.
[9] WEHNER D R. High resolution radar[M]. Norwood, MA:Artech House, 1987:1-10.
[10] CARRETERO-MOYA J, DE MAIO A, GISMERO-MENOYO J, et al. Experimental performance analysis of distributed target coherent radar detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3):2216-2238.
[11] HE Y, JIAN T, SU F, et al. Novel range-spread target detectors in non-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1312-1328.
[12] COVER T M, THOMAS J A. Elements of information theory[M]. New York:John Wiley & Sons, 2012:380-384.
[13] KAY S. Waveform design for multistatic radar detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3):1153-1166.
[14] TANG B, TANG J, PENG Y. MIMO radar waveform design in colored noise based on information theory[J]. IEEE Transactions on Signal Processing, 2010, 58(9):4684-4697.
[15] PILLAI S U, OH H S, YOULA D C, et al. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Transactions on Information Theory, 2000, 46(2):577-584.
[16] LI J, GUERCI J R, XU L Z. Signal waveform's optimal-under-restriction design for active sensing[J]. IEEE Signal Processing Letters, 2006, 13(9):565-568.
[17] BERGIN J S, TECHAU P M, DON CARLOS J E, et al. Radar waveform optimization for colored noise mitigation[C]//IEEE International Radar Conference. Piscataway, NJ:IEEE Press, 2005:149-154.
[18] ZHANG J, ZHU X, WANG H. Adaptive radar phase-coded waveform design[J]. Electronics Letters, 2009, 45(20):1052-1053.
[19] 魏轶旻, 孟华东, 毛滔, 等. 基于凸优化方法的认知雷达波形设计[J]. 现代雷达, 2012, 34(3):18-21. WEI Y M, MENG H D, MAO T, et al. Radar phase-coded waveform design for extended target detection by convex optimization[J]. Modern Radar, 2012, 34(3):18-21(in Chinese).
[20] DE MAIO A, HUANG Y W, PIEZZO M, et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6):2683-2697.
[21] 唐波, 张玉, 李科, 等. 杂波中MIMO雷达恒模波形及接收机联合优化算法研究[J]. 电子学报, 2014, 42(9):1705-1711. TANG B, ZHANG Y, LI K, et al. Joint constant-envelope waveform and receiver design for MIMO radar in the presence of clutter[J]. Acta Electronic Sinica, 2014, 42(9):1705-1711(in Chinese).
[22] KAY S M. Fundamentals of statistical signal processing, VOL. Ⅱ:Detection theory[M]. Upper Saddle River, NJ:Prentice Hall, 1998:60-74.
[23] 唐波, 张玉, 李科. 基于先验知识及其定量评估的自适应杂波抑制研究[J]. 航空学报, 2013, 34(5):1174-1180. TANG B, ZHANG Y, LI K. Adaptive clutter suppression based on prior knowledge and its evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1174-1180(in Chinese).
[24] VAN TREES H L. Optimum array processing[M]. New York:John Wiley & Sons, 2002:440-446.
[25] STOICA P, SELÉN Y. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm:A refresher[J]. IEEE Signal Processing Magazine, 2004, 21(1):112-114.
[26] TROPP J A, DHILLON I S, HEATH R W, et al. Designing structured tight frames via an alternating projection method[J]. IEEE Transactions on Information Theory, 2005, 51(1):188-209.
/
〈 | 〉 |