ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Identification and prediction of air traffic congestion
Received date: 2015-04-24
Revised date: 2015-05-09
Online published: 2015-05-12
Supported by
National Natural Science Foundation of China (61039001); Scientific Research Foundation of Civil Aviation University of China (2014QD01S)
With the rapid development of air transport industry, the phenomenon of air traffic congestion is becoming more and more serious. The research of air traffic congestion is a hot topic of the international civil aviation community, among which, the identification and prediction of air traffic congestion is the most important. The research on identification and prediction methods of air traffic congestion is generalized. Firstly, the research findings of the concept of air traffic congestion based on congestion formations and congestion aftereffects are summed up. Secondly, the important research methods of air traffic congestion identification based on different time scales of traffic data are reviewed. They are threshold identification based on short term data, clustering identification based on long term data and comprehensive evaluation based on mixed data. Thirdly, the air traffic congestion prediction methods based on mathematical algorithms (prediction based on mathematical statistics, traffic flow models and intelligent algorithms) and computer simulation techniques are summarized. Lastly, the recent research focus and the future research directions of identification and prediction of air traftic congestion are put forward.
XU Xiaohao , LI Shanmei . Identification and prediction of air traffic congestion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(8) : 2753 -2763 . DOI: 10.7527/S1000-6893.2015.0123
[1] Pei Y L, Lang Y S. Study of dynamic traffic assignment applied in urban traffic congestion analysis and control[J]. Journal of Huazhong University of Science & Technology, 2002, 19(3): 95-98 (in Chinese). 裴玉龙, 郎益顺. 基于动态交通分配的拥挤机理分析与对策研究[J].华中科技大学学报, 2002, 19(3): 95-98.
[2] Wanke C, Song L, Zobell S, et al. Probabilistic congestion management[C]//6th USA/Europe Seminar of Air Traffic Management R&D, 2005: 27-30.
[3] Volpe National Transportation Systems Center. Enhanced traffic management system (ETMS) functional description[S]. Cambridge, MA: U.S. Department of Transportation, 2002.
[4] Rehwald E, Hecker P. Airport centered flow management[C]//AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2010: 1-6.
[5] Tian W, Hu M H. Time decision making model and methodology for airspace congestion risk management[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011,43(4): 565-571 (in Chinese). 田文, 胡明华. 空域拥挤风险管理时间决策模型与方法[J]. 南京航空航天大学学报, 2011, 43(4): 565-571.
[6] Delahaye D, Puechmorel S. Air traffic complexity: towards intrinsic metrics[C]//3rd USA/Europe Air Traffic Management R&D Seminar, 2000: 1-11.
[7] Chatterji G B, Sridhar B. Measures for air traffic controller workload prediction[C]//AIAA Aircraft Technology, Integration and Operations Forum. Reston: AIAA, 2001:1-14.
[8] Holly K, Cabeza Y, Callaham M, et al. Feasibility of using air traffic complexity metrics for TFM decision support[R]. Mclean: MITRE Corporation, 2002.
[9] He Y. Research on indicators model of air traffic complexity[D]. Shanghai: Tongji University, 2007 (in Chinese). 何毅. 空中交通复杂度参数模型的研究[D]. 上海: 同济大学, 2007.
[10] Kopardekar P, Schwartz A, Magyarits S, et al. Airspace complexity measurement: An air traffic control simulation analysis[J]. International Journal of Industrial Engineering: Theory, Applications and Practice, 2009, 16(1): 61-70.
[11] Mondoloni S, Liang D. Airspace fractal dimensions and applications[C]//4rd USA/Europe Air Traffic Complexity: towards Intrinsic Metrics R&D Seminar, 2001: 1-7.
[12] Delahaye D, Puechmorel S, Hansman J, et al. Air traffic complexity map based on nonlinear dynamical systems[C]//4th Eurocontrol Innovative Research Workshop & Exhibition, 2005: 284-303.
[13] Lee L, Delahaye D, Puechmorel S. Describing air traffic flows using stochastic programming[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6198-6212.
[14] Zhang J, Hu M H, Zhang C, et al. Airspace complexity modeling[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(4): 454-460 (in Chinese). 张进, 胡明华, 张晨, 等. 空域复杂性建模[J]. 南京航空航天大学学报, 2010, 42(4): 454-460.
[15] Zhang C, Hu M H, Zhang J, et al. Sector asset management based on air traffic complexity[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 607-613 (in Chinese). 张晨, 胡明华, 张进, 等. 基于交通复杂性的扇区资源管理[J]. 南京航空航天大学学报, 2010, 42(5): 607-613.
[16] Wang P T R, Tene N, Wojcik L. Relationship between airport congestion and at-gate delay[C]//Digital Avionics Systems Conference, 2002: 2D5-1-10.
[17] Li J S, Ding J L. Analysis of flight delay propagation using Bayesian networks[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1598-1604 (in Chinese). 李俊生, 丁建立. 基于贝叶斯网络的航班延误传播分析[J]. 航空学报, 2008, 29(6): 1598-1604.
[18] Mukherjee A, Lovell D J, Ball M O, et al. Using optimization and queuing models to estimate long-term average flight delays and cancellation rates[EB/OL].[2009-08-16]. http://transpor2.epfl.ch/tristan/FullPapers/164Ball.pdf.
[19] Xu T, Ding J L, Gu B, et al. Forecast warning level of flight delays based on incremental ranking support vector machine[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1256-1262 (in Chinese). 徐涛, 丁建立, 顾彬, 等. 基于增量式排列支持向量机的机场航班延误预警[J]. 航空学报, 2009, 30(7):1256-1262.
[20] Lee K, Feron E, Pritchett A. Air traffic complexity: an input-output approach[C]//American Control Conference. Piscataway, NJ: IEEE Press, 2007: 474-479.
[21] Lee K, Feron E, Pritchett A. Describing airspace complexity: Airspace response to disturbances[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 210-222.
[22] van Paassen M M, d'Engelbronner J G, Mulder M. Towards an air traffic control complexity metric based on workspace constraints[C]//Systems Man and Cybernetics (SMC). Piscataway, NJ: IEEE Press, 2010: 654-660.
[23] Li S M. Research on identification and prediction methods of air traffic congestion[D]. Tianjin: Tianjin University, 2014 (in Chinese). 李善梅. 空中交通拥挤的识别与预测方法研究[D]. 天津: 天津大学, 2014.
[24] Dorado-Usero M, Guerrero J, Schwartza A, et al. Capability assessment of various fast-time simulation models and tools with analysis concerns[R]. Denver: FAA/Eurocontrol Cooperative R&D, 2004.
[25] Sun D F. A multicommodity eulerian-lagrangian large-capacity cell transmission model for enroute traffic[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 616-628.
[26] Zobell S, Wanke C, Song L. Continual, probabilistic airspace congestion management[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 1-13.
[27] Zhao Y F, Chen K, Liu G, et al. A new flow alert index for sector congestion and its application[J]. China Safety Science Jounal, 2009, 19(3): 103-107 (in Chinese). 赵嶷飞, 陈凯, 刘刚, 等. 一种新的扇区拥挤告警指标及应用[J]. 中国安全科学学报, 2009, 19(3): 103-107.
[28] Krozel J, Hoffman B, Penny S, et al. Selection of datasets for nas-wide simulation validations[R]. Herndon: Metron Aviation, 2002.
[29] Bilimoria K D, Lee H Q. Analysis of aircraft clusters to measure sector-independent airspace congestion[C]//5th Aviation, Technology, Integration, and Operations Conference, 2005.
[30] Penny S, Hoffman B, Krozel J A, et al. Classification of days in the national airspace system using cluster analysis[J]. Air Traffic Control Quarterly, 2005, 13(1): 29-54.
[31] Grabbe S, Sridhar B, Mukherjee A. Clustering days with similar airport weather conditions[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: 1-16.
[32] Performance Review Commission. An assessment of air traffic management in europe during the calendar year 2006[R]. Brussels: Eurocontrol, 2007.
[33] Yao L. Research on methods of air traffic congestion measures[D]. Tianjin: Civil Aviation University of China, 2008 (in Chinese). 姚玲. 空中交通拥挤评价方法研究[D]. 天津: 中国民航大学, 2008.
[34] Zhao Y F, Chen K. Application of evidence theory in air traffic congestion assessment[J]. Journal of Transportation Information and Safety, 2010(1): 47-50 (in Chinese). 赵嶷飞, 陈凯. 证据理论在空中交通拥挤评估中的应用[J]. 交通信息与安全, 2010(1): 47-50.
[35] Li S M, Xu X H, Wang C, et al. Congestion identification of crossing air routes based on gray clustering method[J]. Journal of Southwest Jiaotong University, 2015, 50 (1): 189-197 (in Chinese). 李善梅, 徐肖豪, 王超, 等. 基于灰色聚类的交叉航路拥挤识别方法[J]. 西南交通大学学报, 2015, 50 (1): 189-197.
[36] Larry M. Probabilistic methods for air traffic demand forecasting[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002: 5-8.
[37] Chatterji G B, Sridhar B, Sheth K, et al. Methods for establishing confidence bounds on sector demand forecasts[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004: 16-19.
[38] Hunter G, Ramamoorthy K. A trajectory-based probabilistic TFM evaluation tool and experiment[C]//ICNS Conference, 2006: 1-7.
[39] Ramamoorthy K, Boisvert B, Hunter G. A real-time probabilistic traffic flow management evaluation tool[C]//25th Digital Avionics Systems Conference, 2006: 1-8.
[40] Li S M, Xu X H, Wang F. Risk prediction model and methodology of airport congestion based on probabilistic demand[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 154-159 (in Chinese). 李善梅, 徐肖豪, 王飞. 基于需求不确定性的机场拥挤风险预测模型与方法[J]. 西南交通大学学报, 2013, 48(1): 154-159.
[41] Chatterji G B, Sridhar B. National airspace system delay estimation using weather weighted traffic counts[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2005: 1-17.
[42] Gilbo E, Smith S. A new model to improve aggregate air traffic demand predictions[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2007, 6450: 1-11.
[43] Zhang J, Xu X H, Wang F. Airport delay performance evaluation based on fuzzy linear regression model[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 109-114 (in Chinese). 张静, 徐肖豪, 王飞. 基于模糊线性回归的终端区延误性能评估[J]. 交通运输工程学报, 2010, 10(4): 109-114.
[44] Bilbo E P, Smith S B. New method for probabilistic traffic demand predictions for en route sectors based on uncertain predictions of individual flight events[C]//Ninth USA/Europe Air Traffic Management Research and Development Seminar, 2011: 14-17.
[45] Menon P K, Sweriduk G D, Bilimoria K D. New approach for modeling, analysis and control of air traffic flow[J]. Journal of Guidance, Control, and Dynamics, 2003, 27(5): 737-744.
[46] Mukherjee A, Lovell D J, Ball M O, et al. Modeling delays and cancellation probabilities to support strategic simulations[C]//Sixth USA/Europe Air Traffic Management Research and Development Seminar, 2005: 1-10.
[47] Wieland F. Investigating the volume-delay relationship at congested airports[C]//AIAA Aviation Technology, Integration, and Operations Conference, 2006: 450-456.
[48] Zhang J. Research on airport capacity and delay assessment affected by the weather[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). 张静. 天气影响的机场容量与延误评估研究[D]. 南京:南京航空航天大学, 2012.
[49] Yan K W. The research of the fleet assignment and aircraft evaluation based on market demand forecast[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). 演克武. 基于需求预测的机型指派和评价研究[D]. 南京: 南京航空航天大学, 2010.
[50] Li S M, Xu X H, Meng L H. Forecasting of airport congestion level based on cluster and neural network algorithms[J]. Computer Engineering and Applications, 2013, 49(17): 254-257 (in Chinese). 李善梅, 徐肖豪, 孟令航. 基于聚类神经网络的机场拥挤等级预测[J]. 计算机工程与应用, 2013, 49(17): 254-257.
[51] Milbredt O, Grunewald E. A neural network approach to airport management[C]//AIAA Infotech@Aerospace Conference. Reston: AIAA, 2015: 1-10.
[52] Cheng H, Li Y M, Luo Q, et al. Study on flight delay with C4.5 decision tree based prediction method[J]. Systems Engineering-Theory & Practice, 2015, 34(S1): 239-247 (in Chinese). 程华, 李艳梅, 罗谦, 等. 基于C4.5决策树方法的到港航班延误预测问题研究[J]. 系统工程理论与实践, 2015, 34(S1): 239-247.
[53] Wen Y Y, Dai F Q. Terminal area capacity assessment based on TAAM[J]. Journal of Civil Aviation Flight University of China, 2013, 24(6): 9-14 (in Chinese). 温媛媛, 戴福青. 基于TAAM机场终端区容量评估方法研究[J]. 中国民航学院学报, 2013, 24(6): 9-14.
[54] Mota M M, Scala P, Boosten G. Simulation-based capacity analysis for a future airport[C]//Computer Aided System Engineering (APCASE), 2014: 97-101.
[55] Zhang H, Xu Y, Yang L, et al. Macroscopic model and simulation analysis of air traffic flow in airport terminal area[J]. Discrete Dynamics in Nature and Society, 2014, 14(6): 1-15.
[56] Huang Y H. The research on the method of airspace evaluation and system design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004 (in Chinese). 黄宇华. 空域评估方法研究及其系统设计[D]. 南京: 南京航空航天大学, 2004.
[57] Xu X H, Han F, Dai F Q. Design and implementation of air traffic flow statistics and prediction system[J]. Journal of Civil Aviation University of China, 2005, 23(4): 1-5 (in Chinese). 徐肖豪, 韩峰, 戴福青. 空中交通流量统计和预测系统的设计与实现[J]. 中国民航学院学报, 2005, 23(4): 1-5.
[58] Li S M, Xu X H, Meng L H. Flight conflict forecastingbased on chaotic time series[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(4): 388-394.
[59] Hu J, Li Q, Hu Y. The method of active queue management based on air traffic network[C]//Communication Software and Networks, 2011: 238-241.
[60] Bai X, Menon P K. Optimal terminal area flow control using eulerian traffic flow model[C]//AIAA Guidance, Navigation, and Control Conference, 2013: 1-16.
[61] Khadilkar H, Balakrishnan H. Network congestion control of airport surface operations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 933-940.
[62] Fleurquin P, Ramasco J J, Eguíluz V M. Characterization of delay propagation in the US air-transportation network[J]. Transportation Journal, 2014, 53(3): 330-344.
[63] Prete J, Krozel J. Benefit of a raycast weather severity metric for estimating transition airspace capacity[C]//AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2010.
[64] Tien S L, Taylor C, Wanke C. Identifying representative weather-impact scenarios for flow contingency management[C]//AIAA Aircraft Technology, Integration, and Operations Conference. Reston: AIAA, 2013: 1-13.
[65] Dhal R, Roy S, Taylor C, et al. Forecasting weather-impacted airport capacities for flow contingency management: advanced methods and integration[C]//Aviation Technology, Integration, and Operations Conference, 2013: 1-12.
[66] Campbell S, DeLaura R. Convective weather impact forecasting in the terminal area[C]//AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2013.
[67] Kim B, Clarke J P. Modeling and optimization of terminal area utilization by assigning arrival and departure fixes[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2013.
[68] Bolaños M E, Murphy D. How much delay does New York inject into the national airspace system? A graph theory analysis[C]//AIAA Aviation Technology, Integration, and Operations Conference, 2013: 1-11.
[69] Kim B, Li L, Clarke J P. Runway assignments that minimize terminal airspace and airport surface emissions[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 789-798.
[70] Du W B. Research on complex network and network dynamics for air transportation systems[D]. Hefei: University of Science and Technology of China, 2010 (in Chinese). 杜文博. 面向航空交通系统的复杂网络与网络动力学研究[D]. 合肥: 中国科学技术大学, 2010.
/
〈 | 〉 |