ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Unsteady flow interaction mechanism of coaxial rigid rotors in hover
Received date: 2015-01-04
Revised date: 2015-04-15
Online published: 2015-04-21
Supported by
National Natural Science Foundation of China(11272150);Project Funded by the Priority Academic Development of Jiangsu Higher Education Institutions
A computational fluid dynamics(CFD) method based on moving-embedded grid technique is established to simulate the unsteady flow field of the coaxial rigid rotor in hover. In this solver, based on the highly-efficient moving-embedded grid technology, the simulation method is developed by solving the compressible Reynolds-averaged Navier-Stokes(RANS) equations with Baldwin-Lomax turbulence model and a dual-time method. Based upon the validation of the present CFD method, during the process of blade-vortex interaction in hover, close vortex-surface interactions and impingement phenomenon have been observed; at the same time, the interaction process among the vortexes shed from the upper blades and lower blades has been captured obviously, as a result, the evolution laws of position and strength of blade-tip vortex shed from different blades are obtained in detail. Furthermore, the periodic unsteady characteristics and variation trend of the aerodynamic forces of the upper rotor and lower rotor have been analyzed. The simulation results demonstrate that the upper blade vortices can impinge upon the lower blade, which causes the thrust loss of lower blade; the strength and positions of the vortexes shed from upper blades and lower blades could change due to the interaction; the forces on both the upper and lower rotors increase as the blades approach, then decrease and increase again as they move away.
ZHU Zheng , ZHAO Qijun , LI Peng . Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 568 -578 . DOI: 10.7527/S1000-6893.2015.0106
[1] LEISHMAN J G, SYAL M. Figure of merit definition for coaxial rotors[J]. Journal of the American Helicopter Society, 2008, 53(3):290-300.
[2] LEISHMAN J G, ANANTHAN S. An optimum coaxial rotor system for axial flight[J]. Journal of the American Helicopter Society, 2008, 53(4):366-381.
[3] LEISHMAN J G. Aerodynamic performance considerations in the design of a coaxial proprotor[J]. Journal of the American Helicopter Society, 2009, 54(1):12005-1-12005-14.
[4] LEISHMAN J G, ANANTHAN S. Aerodynamic optimization of a coaxial proprotor[C]//Proceedings of the 62th Annual Forum of the American Helicopter Society. Phoenix:American Helicopter Society, 2006:64-85.
[5] ANDREW M J. Coaxial rotor aerodynamics in hover[J]. Vertica, 1981, 5(2):163-172.
[6] BAGAI A, LEISHMAN J G. Free-wake analysis of tandem, tilt-rotor and coaxial rotor configurations[J]. Journal of the American Helicopter Society, 1996, 41(3):196-207.
[7] 黄水林, 徐国华, 李春华. 基于自由尾迹方法的共轴式双旋翼流场分析[J]. 南京航空航天大学学报, 2009, 40(6):721-726. HUANG S L, XU G H, LI C H. Flow field analysis of coaxial twin rotor based on free wake[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 40(6):721-726(in Chinese).
[8] KIM H W, BROWN R E. A rational approach to comparing the performance of coaxial and conventional rotors[J]. Journal of the American Helicopter Society, 2010, 55(1):12003-1-12003-9.
[9] KIM H W, BROWN R E. A comparison of coaxial and conventional rotor performance[J]. Journal of the American Helicopter Society, 2010, 55(1):12004-1-12004-20.
[10] 童自力, 孙茂. 共轴式双旋翼流动的N-S方程模拟[J]. 航空学报, 1998, 19(1):1-5. TONG Z L, SUN M. Navier-Stokes calculations of coaxial rotor aerodynamics[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):1-5(in Chinese).
[11] 童自力, 孙茂. 共轴式双旋翼气动力特性的计算研究[J]. 航空学报, 1999, 20(4):348-350. TONG Z L, SUN M. Navier-Stokes analysis of the aerodynamic properties of coaxial rotors[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(4):348-350(in Chinese).
[12] LAKSHMINARAYAN V K, BAEDER J D. High-resolution computational investigation of trimmed coaxial rotor aerodynamics in hover[J]. Journal of the American Helicopter Society, 2009, 54(4):42008-1-42008-21.
[13] LAKSHMINARAYAN V K, BAEDER J D. Computational investigation of micro-scale coaxial rotor aerodynamics in hover[J]. Journal of Aircraft, 2010, 47(3):940-955.
[14] LAKSHMINARAYAN V K, BAEDER J D. Computational investigation of small scale coaxial rotor aerodynamics in hover:AIAA-2009-1069[R]. Reston:AIAA, 2009.
[15] XU H Y, YE Z Y. Coaxial rotor helicopter in hover based on unstructured dynamic overset grids[J]. Journal of Aircraft, 2010, 47(5):1820-1824.
[16] XU H Y, YE Z Y. Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors[J]. Chinese Journal of Aeronautics, 2011, 24(1):1-7.
[17] 许和勇, 叶正寅. 悬停共轴双旋翼干扰流动数值模拟[J]. 航空动力学报, 2011, 26(2):453-457. XU H Y, YE Z Y. Numerical simulation of interaction unsteady flows around coaxial rotors in hover[J]. Journal of Aerospace Power, 2011, 26(2):453-457(in Chinese).
[18] 叶靓, 徐国华. 共轴式双旋翼悬停流场和气动力的 CFD计算[J]. 空气动力学学报, 2012, 30(4):437-442. YE L, XU G H. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J]. Acta Aerodynamic Sinica, 2012, 30(4):437-442(in Chinese).
[19] COLEMAN C P. A survey of theoretical and experimental coaxial rotor aerodynamic research:NASA TP 3675[R]. Washington, D.C.:NASA, 1997.
[20] HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor:NACA TN-2318[R]. Washington, D.C.:NACA, 1951.
[21] 唐正飞, 高正. 共轴双旋翼与单旋翼悬停流场实验测量值的对比[J]. 南京航空航天大学学报, 1997, 29(6):627-632. TANG Z F, GAO Z. Comparison of experimental data for the coaxial-rotor and single-rotor flowfield in hovering[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1997, 29(6):627-632(in Chinese).
[22] 邓彦敏, 陶然, 胡继忠. 共轴式直升机上下旋翼之间气动干扰的风洞实验研究[J]. 航空学报, 2003, 24(1):10-14. DENG Y M, TAO R, HU J Z. Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1):10-14(in Chinese).
[23] 王博, 招启军, 徐广. 基于新型运动嵌套网格方法的旋翼非定常前飞流场模拟[J]. 空气动力学学报, 2012, 30(1):14-21. WANG B, ZHAO Q J, XU G. Simulation for unsteady flowfield of forward rotor based upon a new moving-embedded grid method[J]. Acta Aerodynamic Sinica, 2012, 30(1):14-21(in Chinese).
[24] ZHAO Q J, XU G H, ZHAO J G. Numerical simulations of the unsteady flowfield of helicopter rotors on moving embedded grids[J]. Aerospace Science and Technology, 2005, 9(2):117-124.
/
〈 | 〉 |