ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface
Received date: 2014-12-15
Revised date: 2015-03-30
Online published: 2015-04-07
Supported by
National Natural Science Foundation of China (91216204);National Key Basic Research and Development Program (2014CB744100)
By solving the compressible Navier-Stokes equations, a CFD software is developed independently, which can well simulate the flow in the gap on the hypersonic vehicle surface. A numerical simulation research of transverse gap has been conducted with this software. The research shows that a preferable result comes from constructing grid with enough density to simulate the low-speed flow in the transverse gap. The convergent heat flux distribution is consistent with the experimental results in the previous literature; approximately, the number of the main vortexes in the gap is proportional to the depth-to-width ratio, which reaches agreement with findings in the literature as well. Affected by the vortexes, the heat flux distribution varies undulatingly. Therefore, capturing the vortexes reasonably has an important significance to the simulation of the heat flux and the results obtained from the CFD software are credible.
Key words: hypersonic; gap; numerical simulation; vortex; heat flux distribution
QIU Bo , ZHANG Haoyuan , GUO Yijun , ZENG Lei , SHI Youan , GUI Yewei . Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(11) : 3515 -3521 . DOI: 10.7527/S1000-6893.2015.0090
[1] Sun J, Liu W Q. Analysis of sharp leading edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(9):1622-1628(in Chinese).孙健,刘伟强.尖化前缘高导热材料防热分析[J].航空学报, 2011, 32(9):1622-1628.
[2] Meng S H, Ding X H, Yi F J, et al. Overview of heat measurement technology for hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1759-1775(in Chinese).孟松鹤,丁小恒,易法军,等.高超声速飞行器表面测热技术综述[J].航空学报, 2014, 35(7):1759-1775.
[3] Huang P L, Liu Z H. Research on electromagnetic scattering characteristics of slits on aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):675-680(in Chinese).黄沛霖,刘战合.飞行器表面缝隙电磁散射特性研究[J].航空学报, 2008, 29(3):675-680.
[4] Weinstein I, Avery D E, Cbapman A J. Aerodynamic heating to the gaps and surfaces of simulated reusable-surface-insulation tile arrays in turbulent flow at Mach 6.6, NASA TM X-3225[R]. Washington, D.C.:NASA, 1975.
[5] Zhang M, Song B F, Feng Y W. Analysis of TPS damage based on finite element method[J]. Aeronautical Computing Technique, 2006, 36(1):67-70(in Chinese).张茂,宋笔锋,冯藴雯.基于有限元方法的防热瓦损伤分析[J].航空计算技术, 2006, 36(1):67-70.
[6] Avery D E. Experimental aerodynamic heating to simulated space shuttle tiles in laminar and turbulent boundary layers with variable flow angles at a nominal mach number of 7, NASA TP 2307[R]. Washington, D.C.:NASA, 1985.
[7] Everhart J L. Supersonic/hypersonic laminar heating correlations for rectangular and impact-induced open and closed cavites, AIAA-2008-1283[R]. Reston:AIAA, 2008.
[8] Tang G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):1-6(in Chinese).唐贵明.狭窄缝隙内的热流分布实验研究[J].流体力学实验与测量, 2000, 14(4):1-6.
[9] Haugen R L, Dhanak A M. Momenturn transfer in trubulent separated flow past a rectangular cavity[J]. Journal of Applied Mechanics, 1966, 33(3):641-646.
[10] Tang G Y. Theoretical and experiment investigation for gap heating environment[D]. Beijing:China Academy of Space Technology, 1996(in Chinese).唐功跃.缝隙热环境及其机理的理论和试验研究[D].北京:中国空间技术研究院, 1996.
[11] Tang G Y, Wu G T, Jiang G Q. Flow analysis and numerical computation of thermal environment in gaps[J]. Chinese Space Science and Technology, 1996(6):1-7(in Chinese).唐功跃,吴国庭,姜贵庆.缝隙流动分析及其热环境的工程计算[J].中国空间科学技术, 1996(6):1-7.
[12] Avery D E. Aerodynamic heating in gaps of thermal protection system tile arrays in laminar and turbulent boundary layers, NASA TP 1187[R]. Washington, D.C.:NASA,1978.
[13] Zhang H Y, Zong W G, Gui Y W. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8):893-900(in Chinese).张昊元,宗文刚,桂业伟.高超声速飞行器前缘缝隙流动数值模拟研究[J].宇航学报, 2014, 35(8):893-900.
[14] Palharini R C, Santos W F N. Length-to-depth ratio effects on flowfield structure of low-density hypersonic cavity flow, AIAA-2011-3130[R]. Reston:AIAA, 2011.
[15] Shen C, Xia X L, Cao Z W, et al. Analysis of flow and heat characteristics of seal structure with gap and cavity under the impact of high speed airflow[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):34-43(in Chinese).沈淳,夏新林,曹占伟,等.缝隙-腔体密封结构在高速气流冲击下的整体流动、传热特性分析[J].航空学报, 2012, 33(1):34-43.
[16] Welterlen T J, Karman S L, Jr. Rapid assessment of F-16 store trajectories using unstructured CFD, AIAA-1995-0354[R]. Reston:AIAA, 1995.
[17] van Leer B. Towards the ultimate conservative difference scheme V:A second order sequel to godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[18] Anderson W K, Thomas J L, van Leer B. A comparison of finite volume flux vector splitting for the Euler equations[J]. AIAA Journal, 1986, 24(9):1453-1460.
[19] Yoon S. LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term[C]//The 9th AIAA CFD Conference. Reston:AIAA,1989.
[20] Wieting A R. Experimental investigation of heat-transfer distributions in deep cavities in hypersonic separated flow, NASA TN D-5908[R]. Washington, D.C.:NASA, 1970.
/
〈 | 〉 |