Electronics and Control

An improved fault tolerant federated filter with fault isolation

  • XIONG Zhi ,
  • SHAO Hui ,
  • HUA Bing ,
  • FANG Zheng
Expand
  • 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-03-19

  Revised date: 2014-04-25

  Online published: 2015-03-31

Supported by

National Natural Science Foundation of China (61374115, 61203188, 60904091); China Scholarship Fund (201203070126); The Six Talents Peak Project of Jiangsu Province (2013-JY-013); The Fundamental Research Funds for the Central Universities (NZ2014406)

Abstract

In order to deal with the problem that the fault in any subsystem would affect navigation system in the reset mode federated filter, a fault tolerant federated filter using fault detection function to construct time-varying measurement noise is proposed. In this new structure, the faulty sub-filter is equivalent to a normal system whose measurement noise tends to infinity to replace the traditional fault isolation method. The optimal estimation values of the corresponding sub-filters are derived to eliminate the influence of suboptimality of the sub-filters' estimation to fault detection. A dynamic information distribution algorithm is presented to reduce proportion of fault sub-filters' estimation information. The simulation based on inertial navigation system/celestial navigation system/scene matching navigation system/terrain contour matching (INS/CNS/SMNS/TERCOM) integrated navigation system is carried out. Simulation results show that the estimation performance of the proposed method is better than the fault isolation method. Therefore, the proposed method has the advantages of improving faulty sub-filters' accuracy, ensuring healthy sub-filters' robustness, and making the performance of global estimation smooth. It has highly practical value.

Cite this article

XIONG Zhi , SHAO Hui , HUA Bing , FANG Zheng . An improved fault tolerant federated filter with fault isolation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(3) : 929 -938 . DOI: 10.7527/S1000-6893.2014.0074

References

[1] Carlson N A. Federated square root filter for decentralized parallel processors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 517-525.







[2] Maier A, Kiesel S, Trommer G F. Performance analysis of federated filter for SAR/TRN/GPS/INS integration[J]. Gyroscopy and Navigation, 2011, 2 (4): 293-300.







[3] Kazerooni M, Khayatian A. A MWPCA-based fault detection in federated no reset mode filter[C]//Proceedings of 2012 20th Iranian Conference on Electrical Engineering. Piscataway, NJ: IEEE, 2012: 851-856.







[4] Xiong Z, Chen J H, Wang, R, et al. A new dynamic vector formed information sharing algorithm in federated filter[J]. Aerospace Science and Technology, 2013, 29(1): 37-46.







[5] Zhang K, Liu H P, Li H N, et al. SINS/GPS/CNS integrated navigation federal filtering algorithm[J]. Journal of Chinese Inertial Technology, 2013, 21(2): 226-230 (in Chinese). 张科, 刘海鹏, 李恒年, 等. SINS/GPS/CNS 组合导航联邦滤波算法[J]. 中国惯性技术学报, 2013, 21(2): 226-230.







[6] Zhang T, Xu X S.Transfer alignment algorithm based on adaptive federated filter[J].Journal of Chinese Inertial Technology, 2007, 15(5): 512-516 (in Chinese). 张涛, 徐晓苏. 基于自适应联邦滤波的传递对准算法[J]. 中国惯性技术学报, 2007, 15(5): 512-516.







[7] Jamshaid A, Fang J C. SINS/ANS/GPS integration using federated Kalman filter based on optimized information-sharing coefficients, AIAA-2005-6452[R]. Reston: AIAA, 2005.







[8] Qiu K, Wei R X, Zhang Z L. Study of an adaptive and fault-tolerant federated filter algorithm based on RBF [J]. Control and Decision, 2004, 19(2): 1420-1424 (in Chinese). 邱恺, 魏瑞轩, 张宗麟. 一种基于RBF网络的自适应容错联邦滤波算法研究[J]. 控制与决策, 2004, 19(2): 1420-1424.







[9] Wu X Z, Zhou J, Qiu K. Study of a robust federated filtering algorithm based on fault factor function[J]. Journal of Astronautics, 2006, 27(1): 57-60 (in Chinese). 吴训忠, 周军, 邱恺. 基于故障因子函数的鲁棒联邦滤波算法研究[J]. 宇航学报, 2006, 27(1): 57-60.







[10] Qiu K, Wu X Z, Zhang Z L, et al. On fault-tolerant information sharing scheme for federated filters[J]. Control and Decision, 2006, 21(3): 343-360 (in Chinese). 邱恺, 吴训忠, 张宗麟, 等. 联邦滤波器容错信息分配方法研究[J]. 控制与决策, 2006, 21(3): 343-360.







[11] Qiu K, Wu X Z, Zhang Z L, et al. Information-sharing scheme for federated filter with optimality[J].Control Theory & Applications, 2007, 24(1): 39-45 (in Chinese). 邱恺, 吴训忠, 张宗麟, 等. 全局最优联邦滤波器信息分配原则[J]. 控制理论与应用, 2007, 24(1): 39-45.







[12] Brumback B D, Srinath M D. Chi-square test for fault-detection in Kalman filters[J]. IEEE Transactions on Automatic Control, 1987, 32(6): 552-554.







[13] Cheng H B, Ni S H, Huang G R, et al. Application of residual error χ2test method in federated filter[J]. Process Automation Instrumentation, 2012, 33(3): 9-11 (in Chinese). 程洪炳, 倪世宏, 黄国荣, 等. 残差χ2检验法在联邦滤波中的应用[J]. 自动化仪表, 2012, 33(3): 9-11.







[14] Li D, Liu J Y, Xiong Z, et al. Satellite's multi-sensor autonomous fault tolerant navigation system[J]. Journal of Shanghai Jiaotong University, 2008, 42(5): 841-845 (in Chinese). 李丹, 刘建业, 熊智, 等. 基于多传感器的卫星容错自主导航系统[J]. 上海交通大学学报, 2008, 42(5): 841-845.







[15] Xiong Z, Liu J Y, Yu F, et al. Research of airborne INS/CNS integrated filtering algorithm based on celestial angle observation[J]. Journal of Astronautics, 2010, 31(2): 397-403 (in Chinese). 熊智, 刘建业, 郁丰, 等. 基于天文角度观测的机载惯性/天文组合滤波算法研究[J]. 宇航学报, 2010, 31(2): 397-403.







[16] Liu J Y, Leng X F, Xiong Z, et al. Real-time multi-level scene matching algorithm for inertial integrated navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1401-1407 (in Chinese). 刘建业, 冷雪飞, 熊智, 等. 惯性组合导航系统的实时多级景象匹配算法[J]. 航空学报, 2007, 28(6): 1401-1407.

Outlines

/