ACTA AERONAUTICAET ASTRONAUTICA SINICA >
In-plane adaptive retrieval method for tethered space robots after target capturing
Received date: 2014-11-18
Revised date: 2015-03-02
Online published: 2015-03-12
Supported by
National Natural Science Foundation of China (11272256); Fundamental Research Funds for the Central Universities (3102014JCQ01005)
After a target satellite is captured by the tethered space robot (TSR), the operator of TSR and the target satellite compose a combination with uncertain mass, inertia and tether junction position. The tether length, tether deflection and combination attitude are coupled seriously and control inputs are strictly limited, which make the retrieval of TSR very difficult. For the retrieval problem, the in-plane dynamic model is established using the Lagrangian method by considering the tether length, tether deflection and the combination attitude. An adaptive and anti-saturation control method is designed based on dynamic inversion theory. Firstly, an adaptive dynamic inversion retrieval controller is designed based on the online estimation of the combination mass, inertia and the tether junction position. Then, auxiliary variables are designed to compensate the inputs, which solve the problem of the limited control inputs. Finally, numerical simulations are conducted to validate the feasibility of the controller. Simulation results show that the online estimator can estimate the uncertain parameters fast and effectively. The retrieval controller can overcome disturbances of the tether deflection and combination attitude by limited inputs. The combination is retrieved stably and effectively along the designed trajectory.
MENG Zhongjie , HUANG Panfeng , WANG Dongke . In-plane adaptive retrieval method for tethered space robots after target capturing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(12) : 4035 -4042 . DOI: 10.7527/S1000-6893.2015.0059
[1] Bischof B, Kerstein L, Starke J, et al. Roger-robotic geostationary orbit restorer[J]. Scientific and Technology Series, 2005, 109:183-193.
[2] Meng Z J, Wang D K, Yang Y Q, et al. Release dynamic and control for tethered space robot using CMAC[C]//6th IEEE Conference on Industrial Electronics and Applications. Piscataway, NJ:IEEE Press, 2011:1297-1301.
[3] Yuga N, Fumiki S, Shinichi N. Guidance and control of "tethered retriever" with collaborative tension-thruster control for future on-orbit service missions[C]//The 8th International Symposium on Artificial Intelligence:Robotics and Automation in Space-ISAIRAS. Munich:ESA, 2005:149-156.
[4] Masahiro N, Nenchev D N, Aasaru U. Tethered robot casting using a spacecraft-mounted manipulator[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(4):827-833.
[5] Mori O, Matunaga S. Coordinated control of tethered satellite cluster systems[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001:6-9.
[6] Williams P. Deployment/retrieval optimization for flexible tethered satellite systems[J]. Nonlinear Dynamics, 2008, 52(1-2):159-179.
[7] Williams P. Optimal deployment/retrieval of tethered satellites[J]. Journal of Spacecraft and Rockets, 2008, 45(2):324-343.
[8] Williams P. Quadrature discretization method in tethered satellite control[J]. Applied Mathematics and Computation, 2011, 217(21):8223-8235.
[9] Wen H, Chen H, Jin D P, et al. Deployment and attitude control of a tethered sub-satellite with controllable arm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2):408-414(in Chinese).文浩,陈辉,金栋平,等.带可控臂绳系卫星释放及姿态控制[J].力学学报, 2012, 44(2):408-414.
[10] Chen H, Wen H, Jin D P, et al. Offset control of a space tethered mechanism using a controllable rigid arm[J]. SCIENTIA SINICA Physica, Mechanica & Astronnomica, 2013, 43(4):363-371(in Chinese).陈辉,文浩,金栋平,等.带刚性臂的空间绳系机构偏置控制[J].中国科学:物理学力学天文学, 2013,43(4):363-371.
[11] Xu X D, Huang P F, Meng Z J. Coordinated control method of space tethered robot for approaching targets[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1222-1231(in Chinese).徐秀栋,黄攀峰,孟中杰.空间绳系机器人逼近目标协调控制方法[J].航空学报, 2013, 34(5):1222-1231.
[12] Hu Z H, Huang P F, Meng Z J, et al. Integrated pose control of tethered space robot in approaching process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2635-2644(in Chinese).胡仄虹,黄攀峰,孟中杰,等.空间绳系机器人逼近过程的位姿一体化控制[J].航空学报, 2013, 34(11):2635-2644.
[13] Wang D K, Huang P F, Meng Z J, et al. Coordinated attitude control of tethered space robot during target approaching phase[J]. Journal of Astronautics, 2014, 35(5):545-553(in Chinese).王东科,黄攀峰,孟中杰,等.空间绳系机器人目标逼近姿态协调控制[J].宇航学报, 2014, 35(5):545-553.
[14] Meng Z J, Huang P F. An effective approach control scheme for the tethered space robot system[J]. International Journal of Advanced Robotic Systems, 2014, doi:10.5772/58847.
[15] Vadali S R, Kim E. Nonlinear feedback deployment and retrieval of tethered satellite systems[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(1):28-34.
[16] Ohtsuka T. Nonlinear optimal feedback control for deployment/retrieval of a tethered satellite[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2001, 43(142):165-173.
[17] Yu B S, Jin D P. Deployment and retrieval of tethered satellite system under J2 perturbation and heating effect[J]. Acta Astronautica, 2010, 67(7):845-853.
[18] Wang D K, Huang P F, Meng Z J, et al. Coordinated attitude control of the combination system after target capture by a tethered space robot[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1998-2006(in Chinese).王东科,黄攀峰,孟中杰,等.空间绳系机器人抓捕后复合体姿态协调控制[J].航空学报, 2013, 34(8):1998-2006.
[19] Huang P F, Wang D K, Meng Z J, et al. Post-capture attitude control for a tethered space robot-target combination system[J]. Robotica, 2015, 33(4):898-919.
[20] Jung W, Mazzoleni A P, Chung J. Dynamic analysis of a tethered satellite system with a moving mass[J]. Nonlinear Dynamics, 2014, 75(1-2):267-281.
[21] Hughes P C. Spacecraft attitude dynamics[M]. New York:John Wiley, 1986:233-239.
[22] Luh J Y S, Walker M W, Paul R P C. Resolved-acceleration control of mechanical manipulators[J]. IEEE Transactions on Automatic Control, 1980, 25(3):468-474.
[23] Wang H L, Xie Y C. Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics[J]. Automatica, 2009, 45(9):2114-2119.
/
〈 | 〉 |