ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Adaptive control law design using guardian maps theory for hypersonic vehicles
Received date: 2014-10-29
Revised date: 2015-01-23
Online published: 2015-01-30
Supported by
National Natural Science Foundation of China (61403191); Funding of Jiangsu Innovation Program for Graduate Education (CXZZ13_0169); The Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems (BUAA-VR-14KF-03)
An adaptive control law design approach using the guardian maps theory is proposed for hypersonic vehicles over the control requirements of a broad flight envelope and wide parameter variation range. Firstly, a linear parameter varying (LPV) model throughout the whole flight envelope is established, and an initial controller structure and parameter are designed at the boundary of the parameters variation range. Secondly, the parameter change range of the initial controller structure is analyzed so as to ensure the system stability; furthermore, based on the guardian maps theory, the corresponding controller parameters can be automatically obtained in relation to the expected performance criterion over the whole flight envelope by the step-by-step iteration. Besides this, the complete adaptive control law is acquired with the integration of these obtained control parameters by applying the curve-fitting mean. The proposed method is able to automatically search a set of controller parameters meeting the performance criterion in the whole flight envelope according to the initial controller, and at the same time to determine the design range guaranteeing global stability of the closed-loop system. Simulation results show that the designed adaptive control law can drive this close system to reach the anticipated design requirements for hypersonic vehicles and also to ensure robust stability of the whole closed-loop system.
XIAO Dibo , LU Yuping , LIU Yanbin , XU Chen . Adaptive control law design using guardian maps theory for hypersonic vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3327 -3337 . DOI: 10.7527/S1000-6893.2015.0030
[1] Fang Y W, Chai D, Mao D H, et al. Status and develop- ment trend of the guidance and control for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1776-1786 (in Chinese). 方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7): 1776-1786.
[2] Davidson J, Lallman F, McMinn J D, et al. Flight control laws for NASA's Hyper-X research Vehicle, AIAA-1999-4124[R]. Reston: AIAA, 1999.
[3] Preller D, Michael K S, Sanchito B, et al. Longitudinal control strategy for hypersonic accelerating vehicles, AIAA-2013-5238[R]. Reston: AIAA, 2013.
[4] Huang X L, Ge D M. Robust gain-scheduling control of hypersonic vehicle subject to input constraints[J]. Systems Engineering and Electronics, 2011, 33(8): 1830-1836 (in Chinese). 黄显林, 葛东明. 输入受限高超声速飞行器鲁棒变增益控制[J]. 系统工程与电子技术, 2011, 33(8): 1830-1836.
[5] Sun C, Huang Y, Qian C, et al. On modeling and control of a flexible air-breathing hypersonic vehicle based on LPV method[J]. Frontiers of Electrical and Electronic Engineering, 2012, 7(1): 56-68.
[6] Zhang Z H, Yang L Y, Shen G Z. Switching LPV control method in wide envelope for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1-10 (in Chinese). 张增辉, 杨凌宇, 申功璋. 高超声速飞行器大包线切换LPV控制方法研究[J]. 航空学报, 2012, 33(9): 1-10.
[7] David O S, Pete J, Andrea S, et al. Robust linear output feedback control of an airbreathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1052-1066.
[8] Cao G, Wang J. Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties[J]. Journal of the Franklin Institute, 2013, 350(5): 1155-1188.
[9] Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401-416.
[10] Bialy B J, Klotz J, Curtis J W. An adaptive backstepping controller for a hypersonic air-breathing missile, AIAA-2012-4468[R]. Reston: AIAA, 2012.
[11] Gao D X, Sun Z Q, Luo X, et al. Fuzzy adaptive control for hypersonic vehicle via Backstepping method[J]. Control Theory and Applications, 2008, 25(5): 805-810 (in Chinese). 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5): 805-810.
[12] Saydy L, Andre L T, Eyad H A. Guardian maps and the generalized stability of parametrized families of matrices and polynomials[J]. Mathematics of Control, Signals, and System, 1990, 3(4): 345-371.
[13] Ebihara Y, Ito Y, Hagiwara T. Exact stability analysis of 2-D systems using LMIs[C]//Proceedings of 43rd IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2004: 1270-1271.
[14] Chen S J, Yang S P, Shiau L G. Guardian map approach to robust stability of interval systems[J]. International Journal of Systems Science, 2012, 43(12): 2193-2201.
[15] Saussie D, Saydy L, Akhrif O. Longitudinal flight control design with handling quality requirements[J]. The Aeronautical Journal, 2006, 110(1111): 627-637.
[16] Saussie D, Akhrif O, Saydy L. Aircraft pitch rate control design with guardian maps[C]//Proceedings of 18th Mediterranean Conference on Control & Automation. Marrakech: MCCA, 2010: 1473-1478.
[17] Saussie D, Saydy L, Akhrif O, et al. Gain scheduling with guardian maps for longitudinal flight control[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1045-1059.
[18] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.
[19] Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869.
[20] Sigthorsson D O, Serrani A. Development of linear parameter-varying models of hypersonic air-breathing vehicles, AIAA-2009-6282[R]. Reston: AIAA, 2009.
[21] Baumann, E, Pahle J W, Davis M C, et al. X-43A flush airdata sensing system flight test results[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 48-61.
/
〈 | 〉 |