ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimization of heat treatment process parameter for nickel-base superalloy X-750 by nonlinear ultrasonic nondestructive evaluation method
Received date: 2014-10-30
Revised date: 2015-01-15
Online published: 2015-01-29
Supported by
National Natural Science Foundation of China (51405405);Fundamental Research Funds for the Central Universities (20720140511)
It is necessary to optimize heat treatment process parameter to achieve better material properties of metallic materials.Nonlinear ultrasonic nondestructive evaluation technology is an effective approach to characterize the material's microstructural change, which can be used to evaluate and optimize heat treatment process by nonlinear ultrasonic waves. Nonlinear ultrasonic method is used to evaluate the heat treated X-750 alloy material.Material properties of specimens after heat treatments are evaluated and predicted by the acoustic nonlinear responses of ultrasonic wave propagation. Conventional linear ultrasonic approaches are also used to make comparisons. It is found that the material properties are significantly improved after heat treatment, and better material properties correspond to less nonlinear response of ultrasound propagation.The qualitative evaluation of three different heat treatment processes for X-750 alloy is provided by ultrasonic nonlinear response in the specimens and shows the optimal heat treatment process for this materials.It can be concluded that the nonlinear acoustic technique can be used to evaluate the heat treatment condition nondestructively and to optimize the process with the improved sensitivity compared with conventional linear ultrasonic approach.
LI Weibin , QIN Xiaoxu . Optimization of heat treatment process parameter for nickel-base superalloy X-750 by nonlinear ultrasonic nondestructive evaluation method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(11) : 3742 -3750 . DOI: 10.7527/S1000-6893.2015.0023
[1] Floreen S, Nelson J L. The effect of heat treatment and composition on the stress corrosion cracking resistance of Inconel alloy X-750[J]. Metallurgical Transaction, 1983, 14(1):133-139.
[2] Ferreno D, Gorrochategui I, Sanchez L. Optimization of heat treatment for improvement of IGSCC properties of an X-750 alloy[J]. Engineering Failure Analysis, 2004, 11(3):799-810.
[3] Wang Q, Yuan S F.Amplifying signal and imaging damage method for active Lamb wave structure health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):1062-1067(in Chinese).王强,袁慎芳.主动Lamb波结构健康监测中信号增强与损伤成像方法[J].航空学报, 2008, 29(4):1062-1067.
[4] Achenbach J D. Wave propagation in elastic solids[M].New York:Elsevier Press, 1975:119-124.
[5] Sun X S, Xiao Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3199-3212(in Chinese).孙侠生,肖迎春.飞机结构健康监测技术的机遇与挑战[J].航空学报, 2014, 35(12):3199-3212.
[6] Li W B, Cho Y H, Achenbach J D. Detection of thermal fatigue in composites by second harmonic Lamb waves[J]. Smart Materials and Structures, 2012, 21(8):085019.
[7] Jhang K Y.Application of nonlinear ultrasonic to NDT of material degradation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000, 47(3):540-548.
[8] Li W B, Cho Y H. Thermal fatigue damage assessment in an isotropic pipe using nonlinear guided waves[J]. Experimental Mechanics, 2014, 54(8):1309-1318.
[9] Metya A, Ghosh G, Prida N, et al.Higher harmonic analysis of ultrasonic signal for ageing behavior study of C-250 grade maraging steel[J]. NDT & E International, 2008, 41(6):484-489.
[10] Hermann J, Kim J Y, Jacobs L, et al.Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves[J]. Journal of Applied Physics, 2006, 99(12):124913.
[11] Korobov A I, Ekonomov A N E. The effect of heat treatment and static deformations on the acoustic nonlinearity of copper wires[J].Acoustical Physics, 2002, 48(5):564-571.
[12] Nagy P B. Fatigue damage assessment by nonlinear ultrasonic material characterization[J].Ultrasonics, 1998, 36(1-5):375-381.
[13] Cantrell J H, Yost W T. Nonlinear ultrasonic characterization of fatigue microstructures[J]. International Journal of Fatigue, 2001, 23(1):487-490.
[14] Shui G S, Wang Y S, Qu J M.Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound[J]. Advances in Mechanics, 2005, 35(1):52-68(in Chinese).税国双,汪越胜,曲建民.材料力学性能退化的超声无损检测与评价[J].力学进展, 2005, 35(1):52-68.
[15] Li W B, Cho Y H, Hyun S. Characterization of ultrasonic nonlinearity by thermal fatigue[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6):935-940.
[16] Zhou Z G, Liu S M. Nonlinear ultrasonic technique using in nondestructive testing:A review[J]. Journal of Mechanical Engineering, 2011, 47(8):1-11(in Chinese).周正干,刘斯明.非线性无损检测技术的研究、应用和发展[J].机械工程学报, 2011, 47(8):1-11.
[17] Jiao J P, Drinkwater B W, Neild S A, et al. Low-frequency vibration modulation of guided waves to image nonlinear scatters for structural health monitoring[J]. Smart Material and Structure, 2009, 18(6):1-8.
[18] Gao G L, Li D Y, Dong J W, et al. Nonlinear acoustic characteristics of fatigue cracks in aluminum alloy sheet[J]. Journal of Mechanical Engineering, 2010, 46(18):71-76(in Chinese).高桂丽,李大勇,董静薇,等.铝合金薄板疲劳裂纹的非线性声学特性[J].机械工程学报, 2010, 46(18):71-76.
[19] Hu H F, Hu N Q, Qin G J. Coupling analysis of nonlinear vibro-acoustic modulation signals[J]. Journal of Mechanical Engineering, 2010, 46(23):68-76(in Chinese).胡海峰,胡茑庆,秦国军.非线性振动声调制信号耦合特征分析[J].机械工程学报, 2010, 46(23):68-76.
[20] Müller M F, Kim J Y, Qu J, et al.Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates[J].The Journal of the Acoustical Society of American, 2010, 127(4):2141-2152.
[21] Ogi H, Hirao M, Aoki S. Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigue steels[J]. Journal of Applied Physics, 2001, 90(1):438-442.
[22] Yan D, Drimkwater B W, Neild S A. Measurement of the ultrasonic nonlinearity of kissing bonds in adhensivejoints[J].NDT & E International, 2009, 42(5):459-466.
[23] Zinck A A, Krishnaswamy S. Ultrasonic nonlinearity measurements on rolled polycrystalline copper[J].AIP Conference Proceedings, 2010, 1211(1):1404-1409.
[24] Jiang W H, Cao W W.Nonlinear properties of lead zirconate-titanate piezoceramics[J]. Journal of Applied Physics, 2000, 88(11):6684-6689.
/
〈 | 〉 |