ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Study on transonic buffet suppression with flapping rudder
Received date: 2014-09-22
Revised date: 2015-01-28
Online published: 2015-01-29
Supported by
National Natural Science Foundation of China (11172237); Program for New Century Excellent Talents in University (NCET-13-0478)
Structural fatigue and flight accidents may be caused by the oscillating loads induced by buffet in transonic flight, so transonic buffet control is becoming a hot topic in the field of aviation. An investigation based on unsteady Reynolds-averaged Navier-Stokes equations and Spalart-Allmaras(S-A) turbulence model is presented to study the suppression of resonant rudder on the transonic buffet loads in this paper. First, the buffet onset and frequency characteristics for a stationary NACA0012 airfoil are verified with the experimental data. And then, the validation of the resonant rudder are studied from the variables of initial rudder angle, amplitude, frequency and phase angle. The initial rudder angle can reduce the actual angle of attack of the airfoil by the down effect. The amplitude and frequency are main parameters. In the case of rudder with a frequency very close to the buffet frequency, resonance occurs and the amplitudes of the lift and moment coefficients increase rapidly. The phase angle is also an important factor. Lift coefficient has an decrease of about 60% at phase angle towards 270°. Therefore, resonant rudder may be a feasible open-loop strategy to suppress buffet loads with an appropriate and accessible combination of amplitude, frequency and phase angle.
Key words: shock wave; transonic flow; buffet; flow control; open-loop control
GAO Chuanqiang , ZHANG Weiwei , YE Zhengyin . Study on transonic buffet suppression with flapping rudder[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3208 -3217 . DOI: 10.7527/S1000-6893.2015.0034
[1] Humphreys M D. Pressure pulsations on rigid airfoils at transonic speeds, NACA RM L51I12[R]. Washington, D.C.: NASA, 1951.
[2] Lee B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2): 147-196.
[3] Doerffer P, Hirsch C, Dussauge J P, et al. NACA0012 with Aileron (Marianna Braza)[M]//Unsteady Effects of Shock Wave Induced Separation. Berlin: Springer, 2011: 101-131.
[4] Jacquin L, Molton P, Deck S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal, 2009, 47(9): 1985-1994.
[5] Dong L. Numerical studies of aircraft buffet with Navier-Stokes equations[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). 董璐. 飞机抖振特性NS方程计算[D]. 南京: 南京航空航天大学, 2007.
[6] Yang Z C, Dang H X. Buffet onset prediction and flow field around a buffeting airfoil at transonic speeds, AIAA-2010-3051[R]. Reston: AIAA, 2010.
[7] Goncalves E, Houdeville R. Turbulence model and numerical scheme assessment for buffet computations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11): 1127-1152.
[8] Barakos G, Drikakis D. Numerical simulation of transonic buffet flows using various turbulence closures[J]. International Journal of Heat and Fluid Flow, 2000, 21(5): 620-626.
[9] Chung I, Lee D, Reu T. Prediction of transonic buffet onset for an airfoil with shock induced separation bubble using steady Navier-Stokes solver, AIAA-2002-2934[R]. Reston: AIAA, 2002.
[10] Xiao Q, Tsai H M, Liu F. Numerical study of transonic buffet on a supercritical airfoil[J]. AIAA Journal, 2006, 44(3): 620-628.
[11] Xiong J T, Liu Y, Liu F, et al. Multiple solutions and buffet of transonic flow over NACA0012 airfoil, AIAA-2013-3026[R]. Reston: AIAA, 2013.
[12] Rokoni A A, Hasan A T. Prediction of transonic buffet onset for flow over a supercritical airfoil—A numerical investigation[J]. Journal of Mechanical Engineering, 2013, 43(1): 48-53.
[13] Raghunathan S, Mabey D G. Passive shock-wave/boundary-layer control on a wall-mounted model[J]. AIAA Journal, 1987, 25(2): 275-278.
[14] Ogawa H, Babinsky H, Pätzold M, et al. Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings[J]. AIAA Journal, 2008, 46(6): 1442-1452.
[15] Tian Y, Liu P Q, Peng J. Using shock control bump to improve transonic buffet boundary of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1421-1428 (in Chinese). 田云, 刘沛清, 彭健. 激波控制鼓包提高翼型跨声速抖振边界[J]. 航空学报, 2011, 32(8): 1421-1428.
[16] Huang J B, Xiao Z X, Liu J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(2): 260-271.
[17] Caruana D, Mignosi A, Corrège M, et al. Buffet and buffeting control in transonic flow[J]. Aerospace Science and Technology, 2005, 9(7): 605-616.
[18] Zhou H. Numerical analysis of effect of mini-TED on aerodynamic characteristic of airfoils in transonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1367-1373 (in Chinese). 周华. Mini-TED改变翼型跨声速性能的数值分析[J]. 航空学报, 2009, 30(8): 1367-1373.
[19] Barbut G, Braza M, Hoarau Y, et al. Prediction of transonic buffet around a wing with flap[C]//Progress in Hybrid RANS-LES Modelling. Berlin: Springer, 2010: 191-204.
[20] Wang G, Jiang Y W, Ye Z Y. An improved LU-SGS implicit scheme for high Reynolds number flow computations on hybrid unstructured mesh[J]. Chinese Journal of Aeronautics, 2012, 25(1): 33-41.
[21] Jiang Y W. Numerical solution of Navier-Stokes equations on generalized mesh and its application[D]. Xi'an: Northwestern Polytechnical University, 2013 (in Chinese). 蒋跃文. 基于广义网格的CFD方法及其应用[D]. 西安: 西北工业大学, 2013.
[22] Zhang W W, Gao C Q, Ye Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 303-319 (in Chinese). 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319.
[23] Soda A, Ralph V. Analysis of transonic aerodynamic interference in the wing-nacelle region for a generic transport aircraft[C]//The Proceedings of IFSAD 2005—International Forum on Aeroelasticity and Structural Dynamics. Munich: DLR, 2005.
/
〈 | 〉 |