Material Engineering and Mechanical Manufacturing

Geometric generating method of blade profiles on arbitrary rotary flow surfaces

  • YANG Jiong ,
  • NING Tao ,
  • XI Ping
Expand
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Received date: 2014-10-10

  Revised date: 2014-12-07

  Online published: 2014-12-23

Supported by

National Natural Science Foundation of China (51075021)

Abstract

Generally, flow surfaces are reduced to planes, cylindrical surfaces or conical surfaces in traditional blade profile design method. A blade profiles geometric design method on arbitrary rotary flow surfaces is presented. In this method, blade's profiles are generated by traditionally distributing thickness along a camber line method. First, a camber line is generated on the flow surface. Points on the camber line are obtained by stacking point moving along meridional streamline at a distance and rotating circumferentially at the same time. The camber line is divided into series of segments, and arrays of points on flow surface are acquired. Then, thickness on each point is distributed, obtaining pressure line and suction line. Based on the assumptions of the symmetry of pressure and suction line about camber line at the leading edge and trailing edge point, a leading edge and trailing edge generating method is presented. After an elliptical or circular leading edge and trailing edge is created, by adjusting the position and tangent vector of the starting point and end point of suction line and pressure line, G1 continuity at junction points can be guaranteed. A blade geometric modeling system has been developed using MFC and NX8.0. The goal of generating blade profiles on arbitrary rotary flow surfaces is achieved. Compared with airfoils generating on conical surfaces, airfoils generated by this method is closer to airflow trend in flow passage.

Cite this article

YANG Jiong , NING Tao , XI Ping . Geometric generating method of blade profiles on arbitrary rotary flow surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3483 -3493 . DOI: 10.7527/S1000-6893.2014.0336

References

[1] Frost G R, Wennerstrom A J. The design of axial compressor airfoils using arbitrary chamber lines[R]. Wright-Patterson AFB: Aerospace Research Labs, 1973.
[2] Xiao M, Liu B. A study on geometric methods for designing supersonic aerofoil of axial flow compressor[J]. Journal of Aerospace Power, 2000, 15(3): 237-240 (in Chinese). 肖敏, 刘波. 轴流压气机超音叶片叶型几何设计方法的研究[J]. 航空动力学报, 2000, 15(3): 237-240.
[3] Ji G F, Gui X M. A blading design method for axial/centrifugal compressor airfoils using arbitrary camber lines [J]. Journal of Aerospace Power, 2009, 24(1): 150-156 (in Chinese). 冀国锋, 桂幸民. 轴流/离心压气机叶片通用任意中弧造型设计方法[J]. 航空动力学报, 2009, 24(1): 150-156.
[4] Ma W S. Investigation of multistage axial-compressor aerodynamic optimization design[D]. Beijing: Tsinghua University, 2009 (in Chinese). 马文生. 多级轴流压气机气动优化设计研究[D]. 北京: 清华大学, 2009.
[5] Qiu M, Zhou Z G, Liu L L, et al. Supersonic compressor blade profile design method [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 975-985 (in Chinese). 邱名, 周正贵, 刘龙龙, 等. 超声压气机叶型设计方法[J]. 航空学报, 2014, 35(4): 975-985.
[6] Bruna D, Cravero C. Modeling the aerodynamic performance of modern axial flow compressor profiles: A correlative approach using current CFD technology[C]//Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[7] Bruna D, Cravero C. A CFD suite for design and performance prediction of single and multistage axial flow compressors[C]//Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Intermal Flows Lyon, 2007: 1-7.
[8] Briasco G, Bruna D, Cravero C. A NURBS-based optimization tool for axial compressor cascades at design and off-design conditions[C]//ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin: American Society of Mechanical Engineers, 2008: 2425-2434.
[9] Koini G N, Sarakinos S S, Nikolos I K. A software tool for parametric design of turbomachinery blades[J]. Advances in Engineering Software, 2009, 40(1): 41-51.
[10] Korakianitis T, Rezaienia M A, Hamakhan I A, et al. Two- and three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method for the design of high efficiency turbines, compressors, and isolated airfoils[J]. Journal of Turbomachinery, 2013, 135(4): 041002.
[11] Korakianitis T, Hamakhan I A, Rezaienia M A, et al. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method[J]. Applied Energy, 2012, 89(1): 215-227.
[12] Li L, Li L Z, Ao L B, et al. 14 parameters cascade design method with curvature optimization[J]. Journal of Propulsion Technology, 2013, 34(1): 37-41 (in Chinese). 李磊, 李立州, 敖良波, 等. 基于曲率优化的 14 参数平面叶栅设计方法[J]. 推进技术, 2013, 34(1): 37-41.
[13] Liu W W, Zhang D H, Bai Y, et al. Research on rectification technology of parametric grid distortion in blades modeling process[J]. Machine Tool & Hydraulics, 2004(1): 65-67 (in Chinese). 刘维伟, 张定华, 白瑀, 等. 叶片造型网格扭曲的校正方法研究[J]. 机床与液压, 2004(1): 65-67.
[14] Bai Y, Zhang D H, Ren X J, et al. High quality geometric modeling of blades[J]. Mechanical Science and Technology, 2003, 22(3): 447-449 (in Chinese). 白瑀, 张定华, 任军学, 等. 叶片高质量造型方法研究[J]. 机械科学与技术, 2003, 22(3): 447-449.
[15] Editorial Board of Aircraft Engine Design Manual. Aircraft engine design manual volume 8: Compressor [M]. Beijing: Aviation Industry Press, 2000: 109-114 (in Chinese). 《航空发动机设计手册》总编委会. 航空发动机设计手册第8册: 压气机[M]. 北京: 航空工业出版社, 2000: 109-114.
[16] Pachidis V, Pilidis P, Talhouarn F, et al. A fully integrated approach to component zooming using computational fluid dynamics[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 579-584.
[17] Benini E, Biollo R. Aerodynamics of swept and leaned transonic compressor-rotors[J]. Applied Energy, 2007, 84(10): 1012-1027.
[18] Liu B J, Yuan C X, Yu X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil [J]. Journal of Propulsion Technology, 2013, 34(7): 890-897 (in Chinese). 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7): 890-897.
[19] Wheeler A P S, Sofia A, Miller R J. The effect of leading-edge geometry on wake interactions in compressors[J].Journal of Turbomachinery, 2009, 131(4): 041013.
[20] Hamakhan I A, Korakianitis T. Aerodynamic performance effects of leading-edge geometry in gas-turbine blades[J]. Applied Energy, 2010, 87(5): 1591-1601.

Outlines

/