Fluid Mechanics and Flight Mechanics

Optimal design for aerodynamic shape parameters of optimum speed rotor

  • XU Ming ,
  • LI Jianbo ,
  • HAN Dong
Expand
  • National Key of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-09-22

  Revised date: 2014-11-24

  Online published: 2014-12-15

Supported by

Funding of Jiangsu Innovation Program for Graduate Education (CXLX13_164); The Fundamental Research Funds for the Central Universities; Aeronautical Science Foundation of China (2013ZA52014)

Abstract

An analytical model of rotor aerodynamics has been established in order to achieve the optimal aerodynamic shape parameters of optimum speed rotor; with the model, we computed induced velocity by free-wake theory and calculated rotor aerodynamics by blade element theory. Meanwhile, accuracy and efficiency of this model were guaranteed by using secondary trim method. With the above-mentioned model, we further analyzed the influence of different blade aerodynamic shape parameters on the rotor performance. Using genetic algorithm, aimed at hover efficiency and forward flight required power, we carried out the optimal design for aerodynamic shape parameters of optimum speed rotor and obtained the optimal solution. Then based on the optimal solution, we analyzed the influence of blade shape parameters on the rotor performance sensitivity by interval factor method. The sensitivity value demonstrated the optimality of the solution. Finally, having built the blade model and carried out the wind tunnel test, the results of the test show that optimal design for aerodynamic shape parameters can make hover and forward flight performance of rotor reach the theoretical calculation values, which verify the effectiveness of the optimal design for aerodynamic shape parameters of optimum speed rotor.

Cite this article

XU Ming , LI Jianbo , HAN Dong . Optimal design for aerodynamic shape parameters of optimum speed rotor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2133 -2144 . DOI: 10.7527/S1000-6893.2014.0322

References

[1] Steiner J, Gandhi F, Yoshizaki Y. An investigation of variable rotor RPM on performance and trim[C]//Proceedings of the American Helicopter Society 64th Annual Forum. Montreal, Canada: [s.n.], 2008.
[2] Graham B D, Inderjit C. Aeromechanics of a variable speed rotor[C]//Proceedings of the American Helicopter Society 67th Annual Forum. Virginia Beach, Virginia: [s.n.], 2011.
[3] Ben B, Inderjit C. Wind tunnel testing for performance and vibratory loads of a variable speed mach scale rotor[C]//Proceedings of the American Helicopter Society 67th Annual Forum. Virginia Beach, Virginia: [s.n.], 2011.
[4] Walsh J L, Bingham G J, Riley M F. Optimization methods applied to the aerodynamic design of helicopter rotor blade[J]. Journal of AHS, 1987, 32(6):39-44.
[5] Kumar S, Bassett D. Rotor performance optimization for future light helicopters[C]//Proceedings of the American Helicopter Society 43th Annual Forum. Louis, Missouri: [s.n.], 1987.
[6] Pomin H, Wagner S. Navier-Stokes analysis of helicopter rotor aerodynamic in hover and forward flight[J]. Journal of Aircraft, 2002, 39(5): 813-821.
[7] Tan J F, Wang H W, Lin C L. Analysis on influence of rotor parameters on rotor hover performance by lifting-surface and free wake method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 249-257 (in Chinese). 谭剑锋, 王浩文, 林长亮. 基于面自由尾迹的直升机旋翼悬停性能参数影响研究[J]. 航空学报, 2012, 33(2): 249-257.
[8] Sun W, Zhang C L. Multi-objective optimization for aerodynamic shape of helicopter blade[J]. Journal of Aerospace Power, 2011, 26(7): 1608-1614 (in Chinese). 孙伟, 张呈林. 直升机桨叶气动外形多目标优化设计[J]. 航空动力学报, 2011, 26(7): 1608-1614.
[9] Wang B, Zhao Q J, Xu G H. Numerical optimization of helicopter rotor twist distribution in hover[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1163-1172 (in Chinese). 王博, 招启军, 徐国华. 悬停状态直升机桨叶扭转分布的优化数值计算[J]. 航空学报, 2012, 33(7): 1163-1172.
[10] Bagai A. Contributions to the mathematical modeling of rotor flow-fields using a pseudo-implicit free-wake analysis[D]. College Park, Maryland: University of Maryland, 1995.
[11] Crouse G L, Leishman J G. A new method for improved rotor free-wake convergence, AIAA-19A93-0872[R]. Reston: AIAA, 1993.
[12] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit technique-including comparisons with experimental data[J]. Journal of AHS, 1995, 40(3): 29-41.
[13] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit algorithm[J]. Journal of Aircraft, 1995, 32(6): 1276-1285.
[14] Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover, NASA-TM-81232[R]. Moffett Field: NASA Ames Research Center, 1980.
[15] Wayne R J. Wake model for helicopter rotors in high speed flight, NASA-CR-177507[R]. Washington, D.C.: NASA, 1988.
[16] Brocklehurst A, Barakos G N. A review of helicopter rotor blade tip shapes[J]. Aerospace Sciences, 2013, 56(1): 35-74.
[17] Berry J. Quarter scale testing of an advanced rotor system for the UH-1 helicopter[C]//Proceedings of the American Helicopter Society 37th Annual Forum. New Orleans, Louisiana: [s.n.], 1981.
[18] Wang M Q, Guo C G. Helicopter optimization design[M]. Nanjing: Nanjing University of Aeronautics and Astronautics Press, 1993: 84-111 (in Chinese). 王幕强, 郭才根. 直升机优化设计[M]. 南京: 南京航空航天大学出版社, 1993: 84-111.
[19] Yang Y J, Chen J J, Ma J, et al. Analysis of reliability and parametric sensitivity based on interval factor method[J]. Journal of Mechanical Strength, 2009, 31(2): 236-239 (in Chinese). 杨宇军, 陈建军, 马娟, 等. 基于区间因子法的可靠度与参数敏感度分析[J]. 机械强度, 2009, 31(2): 236-239.
[20] Xu M, Han D, Li J B. Analysis and experimental investigation on the aerodynamic characteristics of variable speed rotor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2047-2056 (in Chinese). 徐明, 韩东, 李建波. 变转速旋翼气动特性分析及试验研究[J]. 航空学报, 2013, 34(9): 2047-2056.

Outlines

/