Fluid Mechanics and Flight Mechanics

Measurement of erosion morphology in a composite structure nozzle and its influence on flow field

  • LIU Rui ,
  • CHEN Xiong ,
  • ZHOU Changsheng ,
  • LI Yingkun
Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2014-09-28

  Revised date: 2014-11-24

  Online published: 2014-12-10

Supported by

Pre-research Project of General Equipment Department During the Period of 12th Five Years (404040301)

Abstract

In order to study the influence of errosion morphology on the solid rocket motor nozzle, laser scan technique is used to measure the erosion morphology of a composite structure nozzle (made of silica-phenolic and graphite). The measured results show that erosion steps form on the interfaces of two materials. The erosion step presents on the interface in the convergent section, while the step in the divergent section is located at a certain distance downstream of the interface. The nozzle shapes at three different time instants are calculated based on the measured average erosion rates. Then numerical simulations are carried out based on the three nozzle geometries to investigate the influence of the nozzle shape-change caused by erosion on the fluid structure, the heat transfer on the wall and the thrust performance. The results show that a recirculation zone forms around the erosion step in the divergent section, resulting in an enhancement of local heat transfer; expansion waves and oblique shock form around the step and influence the structure of main stream dramatically. While the erosion step in convergent section exerts little influence on the flow field and the heat transfer is decreased in the upstream region of the erosion step. The presence of erosion steps changes the pressure distribution on the nozzle wall, causing a drop in the rocket thrust.

Cite this article

LIU Rui , CHEN Xiong , ZHOU Changsheng , LI Yingkun . Measurement of erosion morphology in a composite structure nozzle and its influence on flow field[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 2958 -2967 . DOI: 10.7527/S1000-6893.2014.0326

References

[1] Zheng Y, Chen J, Ju Y T, et al. Heat transfer of solid rocket motor[M]. Beijing: Beihang University Press, 2006: 166-174 (in Chinese). 郑亚, 陈军, 鞠玉涛, 等. 固体火箭发动机传热学[M]. 北京: 北京航空航天大学出版社, 2006: 166-174.
[2] Koo J H, Ho D W H, Ezekoye O A. A review of numerical and experimental characterization of thermal protection materials: Part 1, numerical modeling, AIAA-2006-4936[R]. Reston: AIAA, 2006.
[3] Zheng X Y, Chen F M, Cai F C. Strategy of thermo-structure coupled computation for composite nozzle[J]. Journal of Aerospace Power, 2011, 26(1): 223-227 (in Chinese). 郑晓亚, 陈凤明, 蔡飞超. 复合喷管热结构耦合计算的一种策略[J]. 航空动力学报, 2011, 26(1): 223-227.
[4] Wang T B, Xue T S, Zhou C S, et al. Numerical calculation of temperature and stress field of complex nozzle[J]. Journal of Ballistics, 2012, 24(2): 88-91 (in Chinese). 王天波, 薛谈顺, 周长省, 等. 复合结构喷管温度场及应力场数值模拟[J]. 弹道学报, 2012, 24(2): 88-91.
[5] Tian S P, Tang G J, Li D K, et al. Gap design of solid rocket motor nozzle structures[J]. Journal of Propulsion Technology, 2005, 26(5): 448-451 (in Chinese). 田四朋, 唐国金, 李道奎, 等. 固体火箭发动机喷管结构缝隙设计[J]. 推进技术, 2005, 26(5): 448-451.
[6] Morozov E V, de la Beaujardiere J F P. Numerical simulation of the dynamic thermostructural response of a composite rocket nozzle throat[J]. Composite Structures, 2009, 91(4): 412-420.
[7] He G Q, He H Q, Mao G W. Calculation of "step effect" in the divergent section of nozzle[J]. Journal of Propulsion Technology, 1990, 6(3): 19-22 (in Chinese). 何国强, 何洪庆, 毛根旺. 喷管扩张段烧蚀的 "台阶效应"计算[J]. 推进技术, 1990, 6(3): 19-22.
[8] Daimon Y, Shimada T, Tsuboi N, et al. Evaluation of ablation and longitudinal vortices in solid rocket motor by computational fluid dynamics, AIAA-2006-5243[R]. Reston: AIAA, 2006.
[9] Zhang X G, Wang C H, Liu Y, et al. Carbon-based nozzle thermochemical erosion characteristics in solid rocket motors[J]. Journal of Propulsion Technology, 2012, 33(1): 93-97 (in Chinese). 张晓光, 王长辉, 刘宇, 等. 固体火箭发动机碳基材料喷管热化学烧蚀特性[J]. 推进技术, 2012, 33(1): 93-97.
[10] Thakre P, Yang V. Chemical erosion of carbon-carbon/graphite nozzles in solid-propellant rocket motors[J]. Journal of Propulsion and Power, 2008, 24(4): 822-833.
[11] Bianchi D, Nasuti F, Martelli E. Coupled analysis of flow and surface ablation in carbon-carbon rocket nozzles[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 492-500.
[12] Turchi A, Bianchi D, Nasuti F, et al. A numerical approach for the study of the gas-surface interaction in carbon-phenolic solid rocket nozzles[J]. Aerospace Science and Technology, 2013, 27(1): 25-31.
[13] Bianchi D, Nasuti F, Onofri M, et al. Thermochemical erosion analysis for chraphite/carbon-carbon rocket nozzles[J]. Journal of Propulsion and Power, 2011, 27(1): 197-205.
[14] Peng L, He G, Li J, et al. Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor[J]. Carbon, 2012, 50(4): 1554-1562.
[15] Evans B. Nozzle erosion characterization and minimization for high-pressure rocket motor applications[D]. Pennsylvania: Pennsylvania State University, 2010.
[16] Menter F R. Two-equation eddy-viscosity turbulence modelsfor engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[17] Blazek J. Computational fluid dynamics: principles and applications[M]. Amsterdam: Elsevier, 2001.
[18] Zhang L P, Wang Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7): 891-916.
[19] Sajben M, Bogar T J, Kroutil J C. Forced oscillation experiments in supercritical diffuser flows[J]. AIAA Journal,1984, 22(4): 465-474.
[20] Thakre P, Rawat R, Clayton R, et al. Mechanical erosion of graphite nozzle in solid-propellant rocket motor[J]. Journal of Propulsion and Power, 2013, 29(3): 593-601.

Outlines

/