ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Direct numerical simulation techniques for hypersonic turbulent flows
Received date: 2014-07-25
Revised date: 2014-09-20
Online published: 2014-10-31
Supported by
National Natural Science Foundation of China (1372330, 11472278, 11472010, 91441103); National High Technology Research and Development Program (2012AA01A304); Chinese Academy of Sciences Innovation Programs(KJCX2-EW-J01,XXH12503-02-02-04)
The recent developments of high resolution schemes, especially, high-order and high-robustness shock-capture schemes, and direct numerical simulation (DNS) cases for hypersonic turbulent flows are reviewed in this paper. The numerical methods include the high-resolution shock-capture methods and the technique to stabilize computation for hypersonic flows, as well as, the developments of WENO and monotonicity preserving schemes. The DNS studies include the effects of compressibility, wall temperature and high-temperature real gas on the turbulent flows, and the studies of hypersonic transition flows are also reviewed briefly. Furthermore, an OpenCFD code developed by the author which is compressible and high-resolution, is addressed briefly
LI Xinliang . Direct numerical simulation techniques for hypersonic turbulent flows[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 147 -158 . DOI: 10.7527/S1000-6893.2014.0233
[1] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578.
[2] Pirozzoli S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011,43:163-194.
[3] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994,115(1): 200-212.
[4] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[5] Suresh A, Huynh H T. Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J]. Journal of Computational Physics, 1997, 136(1): 83-99.
[6] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
[7] Ma Y W, Fu D X. Fourth order accurate compact scheme with group velocity control (GVC)[J].Science in China Series A: Mathematics Physics & Astronomy, 2001, 44(9): 1197-1204.
[8] Fu D X, Ma Y W, Li X L, et al. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2011: 144-164 (in Chinese). 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟 [M]. 北京: 科学出版社, 2011: 144-164.
[9] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
[10] Martin M P, Taylor E M, Wu M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289.
[11] Wu M, Martin M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp [J]. AIAA Journal, 2007, 45(4): 879-889.
[12] Sun Z S, Ren Y X, Larricq C, et al. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence[J]. Journal of Computational Physics, 2011, 230(12): 4616-4635.
[13] Ren Y X, Liu M, Zhang H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2): 365-386.
[14] Li X L, Leng Y, He Z W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis [J]. International Journal for Numerical Methods in Fluids, 2013, 73(6): 560-577.
[15] Li X L, Fu D X. Optimized MP scheme with adaptive dissipation and DNS of supersonic turbulent flows in DLR scramjet intake[C]//Eighth International Conference on Computational Fluid Dynamics. Chengdu: ICCFD, 2014.
[16] Tu G H, Deng X G, Mao M L. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes[J]. Acta Aerodynamics Sinica, 2012, 30(6): 709-712 (in Chinese). 涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较[J]. 空气动力学报, 2012, 30(6):709-712.
[17] Deng X G, Mao M L, Tu G H, et al. High-order and high accurate CFD methods and their applications for complex grid problems[J]. Communications in Computational Physics, 2011, 11(4): 1081-1102.
[18] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
[19] He Z W, Li X L, Liang X. Nonlinear spectral-like schemes for hybrid schemes[J]. Science China: Physics, Mechanics & Astronomy, 2014, 57(4): 753-763.
[20] Toro E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction[M]. Berlin: Springer-Verlag, 2009: 174-184.
[21] Hu X Y,Adams N A,Shu C W. Positivity-preserving method for high-order conservative schemes solving compressible Euler equations[J]. Journal of Computational Physics, 2013, 242: 169-180.
[22] Darian H M, Esfahanian V, Hejranfar K. A shock-detecting sensor for filtering of high-order compact finite difference schemes[J]. Journal of Computational Physics, 2011, 230(3): 494-514.
[23] Shen Y Q, Zha G C. Generalized finite compact difference scheme for shock/complex flowfield interaction[J]. Journal of Computational Physics, 2011, 230(12): 4419-4436.
[24] Kotov D V, Yee H C, Sjogreen B, et al. Performance of four high-order shock-capturing schemes for stiff source terms with discontinuities: preliminary results[R]. Center for Turbulence Research Annual Research Briefs, 2011: 393-403.
[25] Morkovin M V. Effects on compressibility on turbulent flows[M]//Favre A J. Mecanique de la turbulence. Paris: CNRS, 1962: 367-380.
[26] Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 1. Initialization and comparison with experiments[J]. Journal of Fluid Mechanics, 2007,570: 347-364.
[27] Duan L, Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59.
[28] Duan L, Beekman I, Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445.
[29] Duan L, Beekman I, Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672: 245-267.
[30] Huang P G, Coleman G N, Bradshaw P. Compressible turbulent channel flows: DNS results and modeling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218.
[31] Liang X, Li X L. DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8[J]. Science China: Physics Mechanics and Astronomy, 2013, 56(7):1408-1418.
[32] Li X L, Fu D X, Ma Y W. Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at Ma=6[J]. Chinese Physics Letters, 2006, 23(6): 1519-1522.
[33] Chen X P, Li X L. Direct numerical simulation of chemical non-equilibrium turbulent flow[J]. Chinese Physical Letters, 2013, 30(6): 064702.
[34] Zhong X, Ma Y. Boundary-layer receptivity of Mach 7.99 flow over a blunt cone to free-stream acoustic waves[J]. Journal of Fluid Mechanics, 2006, 556: 55-103.
[35] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003,488:31-78.
[36] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate, Part 2. Receptivity to freestream sound[J]. Journal of Fluid Mechanics, 2003,488:79-121.
[37] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate, Part 3. Effects of different types of free-stream disturbances[J]. Journal of Fluid Mechanics, 2005,532: 63-109.
[38] Zhong X, Wang X. Direct numerical simulation on the receptivity, instability and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012,44:527-561.
[39] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone [J]. AIAA Journal, 2008,46(11): 2899-2913.
[40] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22(2): 025105.
[41] Su C H, Zhou H. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack-with the improvement of eN method[J], Science in China G, Mechanics and Astronomy, 2009, 52 (1): 115-123.
[42] Sandham N D, Schulein E A, Wagner E A, et al. Transitional shock-wave/boundary-layer interactions in hypersonic flow[J]. Journal of Fluid Mechanics, 2014, 752:349-382.
[43] Li X L. OpenCFD-SC user's manual[EB/OL]. (2011-4-12) [2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=89129&extra=page%3D1 (in Chinese). 李新亮. OpenCFD-SC用户手册[EB/OL]. (2011-4-12) [2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=89129&extra=page%3D1.
[44] Li X L. OpenCFD-EC User's manual[EB/OL]. (2011-4-12) [2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=89129&extra=page%3D1 (in Chinese). 李新亮.OpenCFD-EC理论手册[EB/OL]. (2011-4-12)[2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=91376&extra=page%3D1
/
〈 | 〉 |