ACTA AERONAUTICAET ASTRONAUTICA SINICA >
An innovative artificial transition technique and its validation through wind tunnel tests
Received date: 2014-08-18
Revised date: 2014-09-09
Online published: 2014-10-31
Supported by
NPU Basic Research Foundation (JC-201103); Aeronautical Science Foundation of China (2013ZD53057)
An innovative artificial transition technique of distributed roughness elements is designed aimed at solving the problems encountered in fixed artificial transition tests with traditional methods in transonic wind tunnel. The shape, height and arrangement of the roughness elements and the design schemes for different configurations of models are determined by theoretical analysis. Meanwhile, the pressure coefficient on an airfoil surface (NACA0012) and the aerodynamic coefficients on an airplane model (GMB-01, or AGARD-B calibration model) are measured in the tests of artificial fixed transition. Sublimation flow visualization technique is used to judge or identify transition. The differences between natural free transition and artificial fixed transition are analyzed. The effectiveness of the innovative artificial transition technique is observed and analyzed. The results show that this kind of innovative artificial transition technique can trigger boundary layer transition from laminar to turbulent and is able to obtain aerodynamic results comparable to those at the high Reynolds number atmospheric flight conditions.
ZHAO Zijie , GAO Chao , ZHANG Zhengke . An innovative artificial transition technique and its validation through wind tunnel tests[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1830 -1838 . DOI: 10.7527/S1000-6893.2014.0284
[1] Fan J C. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2002: 313-314 (in Chinese). 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002: 313-314.
[2] Chen H M. Interference and correction on wind tunnel testing[M]. Beijing: National Defense Industry Press, 2003: 292-299 (in Chinese). 程厚梅. 风洞试验干扰与修正[M]. 北京: 国防工业出版社, 2003: 292-299.
[3] Liepmann H, Fila G H. Investigations of effects of surface temperature and single roughness elements on boundary layer transition, NACA Report TN-890[R]. Washington, D.C.: NASA, 1947.
[4] Albert E, Elmer A. A low-speed experimental investgation of the effect of a sandpaper type of roughness on boundary-layer transition, NACA Report-1349[R]. Washington, D.C.: NASA, 1956.
[5] Barlow J B, Rae W H, Jr, Pope A. Low-speed wind tunnel testing[M]. New York: Wiley Press, 1999: 306-317.
[6] Huang Y, Qian F X, Yu K L. Experimental investigation on boundary layer artificial transition based on transition trip disk[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3): 59-62 (in Chinese). 黄勇, 钱丰学, 于昆龙. 基于柱状粗糙元的边界层人工转捩试验研究[J]. 实验流体力学, 2006, 20(3): 59-62.
[7] Slangen R. Experimental investigation of artificial boundary layer transition[D]. Delft: Delft University of Technology, 2009.
[8] Traub L W. Experimental investigation of the effect of trip strips at low Reynolds number[J]. Journal of Aircraft, 2011, 48(5): 1776-1784.
[9] Casper K M, Johnson H B, Schneider S P. Effect of free stream noise on roughness-induced transition for a slender cone[J]. Journal of Spacecraft and Rockets, 2011, 48(3): 406-413.
[10] Borg M P, Schneider S P, Juliano T J. Effect of free stream noise on roughness-induced transition for the X-51A forebody[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1106-1116.
[11] Ito T, Randall L A, Schneider S P. Effect of noise on roughness-induced boundary-layer transition for scramjet inlet[J]. Journal of Spacecraft and Rockets, 2001, 38(5): 692-698.
[12] Donehoff A E, Horton E A. A low-speed experimental investigation of the effect of a sandpaper type of roughness on boundary-layer transition, NACA TN 3858[R]. Washington, D.C.: NASA, 1958.
[13] Braslow A L. Effect of distributed Granular-type roughned on boundary-layer transition at supersonic speeds with and without surface cooling, NACA RM L58A17[R]. Washington, D.C.: NASA, 1958.
[14] Braslow A L, Knox E C. Simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5, NASA TN 4363[R]. Washington, D.C.: NASA, 1958.
[15] Arnal D, Vermeersch O. Compressibility effects on laminar-turbulent boundary layer transition[C]//45th Symposium of Applied Aerodynamics. Marseille: Inderscience Publishers, 2010: 22-24.
[16] Klebanoff P S, Schubauer G B, Tidstrom K D. Measurement of the effect of two-dimensional and three-dimensional roughness elements on boundary-layer transition[J]. Journal of the Aeronautical Sciences, 1955, 22(11): 803.
[17] Chen Y C, Si J T, Han X L, et al. Investigation of transition effect on the pressure distribution of supercritical wing[J]. Acta Aerodynamica Sinica, 2003, 21(4): 470-475 (in Chinese). 陈迎春, 司江涛, 韩先锂, 等. 转捩对超临界机翼压力分布的影响分析[J]. 空气动力学学报, 2003, 21(4): 470-475.
[18] Bernardini M, Pirozzoli S, Orlandi P. Parameterization of boundary-layer transition induced by isolated roughness elements[J]. AIAA Journal, 2014, 52(10): 2261-2269.
[19] White E B, Rice J M, Ergin F G. Receptivity of stationary transient disturbances to surface roughness[J]. Physics of Fluids, 2005, 17: 064109.
[20] Denissen N A, White E B. Roughness-induced bypass transition, revisited[J]. AIAA Journal, 2008, 46(7): 1874-1877.
[21] Ergin F G, White E B. Unsteady and transitional flows behind roughness elements[J]. AIAA Journal, 2006, 44(11): 2504-2514.
[22] Braslow A L, Harris R V, Hicks R. Use of grit type boundary layer transition strips on wind tunnel models, NASA TN-D3579[R]. Washington, D.C.: NASA, 1966.
[23] Fan J C. Modern flow visualization[M]. Beijing: National Defense Industry Press, 2002: 240-248 (in Chinese). 范洁川. 近代流动显示技术[M]. 北京: 国防工业出版社, 2002: 240-248.
[24] Anderson J D, Jr. Fundamentals of aerodynamics[M]. New York: McGraw-Hill Book Company, 1991: 348-349.
[25] Yang Y, Zuo S H, Li X L, et al. Transition studies for the boundary layer on a swept wing based on sublimation technique[J]. Journal of Experiment in Fluid Mechanics, 2009, 23(3): 40-43 (in Chinese). 杨永, 左岁寒, 李喜乐, 等. 基于升华法试验研究后掠翼三维边界层的转捩[J]. 实验流体力学, 2009, 23(3): 40-43.
[26] Damljanovié D, Vitic A, Vukovic D. Testing of AGARD-B calibration model in the T-38 transonic wind tunnel[J]. Scientific-Technical Review, 2006, LVI (2): 52-62.
/
〈 | 〉 |