ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Attitude takeover control after capture of target by a space robot
Received date: 2014-09-09
Revised date: 2014-10-09
Online published: 2014-10-23
Supported by
National Natural Science Foundation of China (11272256, 61005062)
For the attitude control of target spacecraft whose attitude and orbit control systems have failed, a takeover control approach is proposed that the attitude is controlled after capture of target spacecraft by a space robot. Firstly, the space robot captures a target spacecraft and remains in a fixed configuration to form a combined spacecraft. Then, the new principal axes of inertia, main inertia and allocation matrix of control torque of the combined spacecraft are determined due to the parameter mutation of the combined spacecraft. Furthermore, the attitude error dynamics of the combined spacecraft is established in the form of state space. Finally, the SDRE takeover controller is constructed based on the -α stability design for the service spacecraft, which is solved by the θ-D method to obtain the sub-optimal control law of SDRE controller and achieve the takeover control of target spacecraft attitude by the service spacecraft. Numerical simulations have demonstrated that compared with the traditional SDRE control, the SDRE controller based on the -α stability design can make the closed-loop poles of system away from the imaginary axis, and the θ-D solving method can reduce the computation burden, hence it has better stability and real-time performance.
WANG Ming , HUANG Panfeng , MENG Zhongjie , CHANG Haitao . Attitude takeover control after capture of target by a space robot[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 3165 -3175 . DOI: 10.7527/S1000-6893.2014.0283
[1] Rupp T, Boge T, Kiehling R, et al. Flight dynamics challenges of the German on-orbit servicing mission DEOS[C]//International Symposium on Space Flight Dynamics. Toulouse: ISFD, 2009: 1-13.
[2] Kaiser C, Sjoberg F, Delcura J M, et al. SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO[J]. Acta Astronautica, 2008, 63(4): 400-410.
[3] Debus T J, Dougherty S P. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm[C]//AIAA Infotech@Aerospace Online Conference. Reston: AIAA, 2009: 461-465.
[4] Aghili F. Optimal control of a space manipulator for detumbling of a target satellite[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2009: 3019-3024.
[5] Xu W F, Meng D S, Xu C, et al. Coordinated control of a free-floating space robot for capturing a target[J]. Robot, 2013, 35(5): 559-567 (in Chinese). 徐文福, 孟得山, 徐朝, 等. 自由漂浮空间机器人捕获目标的协调控制[J]. 机器人, 2013, 35(5): 559-567.
[6] Liu H D, Liang B, Li C, et al. Research on coordinate control method for stabilizing a coupling system after the spacecraft is captured[J]. Journal of Astronautics, 2012, 33(7): 920-929 (in Chinese). 刘厚德, 梁斌, 李成, 等. 航天器抓捕后复合体系统稳定的协调控制研究[J]. 宇航学报, 2012, 33(7): 920-929.
[7] Xu X D, Huang P F, Meng Z J. Coordinated stability control of tethered space robot for capturing the target[J]. Robot, 2014, 36(1): 100-110 (in Chinese). 徐秀栋, 黄攀峰, 孟中杰. 空间绳系机器人抓捕目标过程协调稳定控制[J]. 机器人, 2014, 36(1): 100-110.
[8] Wang D K, Huang P F, Meng Z J, et al. Coordinated attitude control of the combination system after target capture by a tethered space robot[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1998-2006 (in Chinese). 王东科, 黄攀峰, 孟中杰, 等. 空间绳系机器人抓捕后复合体姿态协调控制[J]. 航空学报, 2013, 34(8): 1998-2006.
[9] Huang P F, Wang D K, Meng Z J, et al. Post-capture attitude control for a tethered space robot-target combination system[J]. Robotica, 2014, 1(1): 1-22.
[10] Wang M, Huang P F, Chang H T, et al. On-orbit identification of inertia parameters of compound spacecraft using space manipulator[J]. Journal of Northwestern Polytechnical University, 2014, 32(5): 811-816 (in Chinese). 王明, 黄攀峰, 常海涛, 等. 基于机械臂运动的组合航天器惯性参数在轨辨识[J]. 西北工业大学学报, 2014, 32(5): 811-816.
[11] Crassidis J L, Markley F L. Sliding mode control using modified rodrigues parameters[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1381-1383.
[12] Xing G Q, Parvez S. Nonlinear attitude state tracking control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 624-626.
[13] Xue D Y. Feedback control system design and analysis[M]. Beijing: Tsinghua University Press, 2000: 219-220 (in Chinese). 薛定宇. 反馈控制系统设计与分析[M]. 北京: 清华大学出版社, 2000: 219-220.
[14] Xin M, Balakrishnan S N. A new method for suboptimal control of a class of non-linear systems[J]. Optimal Control Applications and Methods, 2005, 26(3): 55-83.
[15] Xin M, Pan H J. Nonlinear optimal control of spacecraft approaching a tumbling target[J]. Aerospace Science and Technology, 2011, 15(5): 79-89.
/
〈 | 〉 |