Fluid Mechanics and Flight Mechanics

A modified loosely-coupled algorithm for calculation of wing rock

  • LI Wei ,
  • MA Baofeng
Expand
  • Ministry-of-Education Key Laboratory of Fluid Mechanics, Beihang University, Beijing 100191, China

Received date: 2014-07-18

  Revised date: 2014-08-08

  Online published: 2014-10-21

Supported by

National Natural Science Foundation of China (11272033); the Fundamental Research Funds for the Central Universities

Abstract

A modified loosely-coupled algorithm is provided for numerical simulation of wing rock. The algorithm combines the explicit and implicit formulas to calculate the dynamics equations and to update girds, improving the temporal convergence and numerical stability, being able to obtain reasonable results with larger time steps. Through analyzing the conventional loosely-coupled algorithm, it is found that if the implicit methods are used to calculate the angular rate and angle, the aerodynamic moments have a large time-lag than motion due to the time-lag of grid. Therefore, the amplitudes of wing rock obtained are larger than experimental values at larger time steps. By contrast, the amplitudes using explicit methods are smaller at larger time steps. By calculating wing rock of swept delta wing being 80°, the feasibility of the modified loosely-coupled method is verified.

Cite this article

LI Wei , MA Baofeng . A modified loosely-coupled algorithm for calculation of wing rock[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1805 -1813 . DOI: 10.7527/S1000-6893.2014.0291

References

[1] Katz J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7): 727-750.
[2] Nelson R C, Pelletier A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Science, 2003, 39(2): 185-248.
[3] Nguyen L E, Yin L P, Chambers J R. Self-induced wing rock of slender delta wings, AIAA-1981-1883[R]. Reston: AIAA, 1981.
[4] Arena A S. An experimental and computational investigation of slender wings undergoing wing rock[D]. Notre Dame: Universtiy of Notre Dame, 1992.
[5] Arena A S, Nelson R C. Experimental investigation on limit cycle wing rock of slender wings[J]. Journal of Aircraft, 1994, 31(5): 1148-1155.
[6] Gresham N T, Wang Z, Gursul I. Vortex dynamics of free-to-roll slender and nonslender delta wings[J]. Journal of Aircraft, 2009, 47(1): 292-302.
[7] Wei L K, Ma B F. Wing rock induced by a hemisphere-cylinder forebody[J]. Journal of Aircraft, 2014, 51(2): 606-613.
[8] Zhang H X, Liu W, Xie Y F, et al. On the rocking motion and its dynamic evolution of a swept delta wing[J]. Acta Aerodynamica Sinica, 2006, 24(1): 5-9 (in Chinese). 张涵信, 刘伟, 谢昱飞, 等. 后掠三角翼的摇滚及其动态演化问题[J]. 空气动力学学报, 2006, 24(1): 5-9.
[9] Liu W, Zhang H X, Zhao H Y. Numerical simulation and physical characteristics analysis for slender wing rock[J]. Journal of Aircraft, 2006, 43(3): 858-861.
[10] Yang Y J, Cui E J, Zhou W J. Numerical research on rock characteristic about a slender wing[J]. Acta Aerodynamica Sinica, 2007, 25(1): 34-44 (in Chinese). 杨云军, 崔尓杰, 周伟江. 细长三角翼摇滚运动数值研究[J]. 空气动力学学报, 2007, 25(1): 34-44.
[11] Ma B F, Deng X Y. Stability of a vortex pair coupled with a freely rolling slender wing[C]//The 13th Symposium of Separated Flow, Vortex & Flow Control. Nanjing: Chinese Aerodynamics Research Society, 2010 (in Chinese). 马宝峰, 邓学蓥. 细长翼/前缘涡耦合系统的稳定性研究[C]//第十三届全国分离流、旋涡和流动控制会议论文集. 南京: 中国空气动力学会, 2010.
[12] Farhat C, Zee K G V, Geuzanie P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18): 1973-2001.
[13] An X M, Xu M, Chen S L. Analysis for second order time accurate CFD/CSD coupled algorithms[J]. Acta Aerodynamica Sinica, 2009, 27(5): 547-552 (in Chinese). 安效民, 徐敏, 陈士橹. 二阶时间精度的CFD/CSD耦合算法研究[J]. 空气动力学学报, 2009, 27(5): 547-552.
[14] Yang Y J, Zhou W J, Cui E J. Influence of coupling time accuracy on simulation of aircraft free movement[J]. Chinese Journal of Computational Physics, 2007, 24(1): 42-49 (in Chinese). 杨云军, 周伟江, 崔尓杰. 耦合时间精度对模拟飞行器自由运动特性的影响[J]. 计算物理, 2007, 24(1): 42-49.
[15] Yan Q J. Numerical analysis[M]. 3rd ed. Beijing: Beihang University Press, 2006: 289-295 (in Chinese). 颜庆津. 数值分析[M]. 3版. 北京: 北京航空航天大学出版社, 2006: 289-295.

Outlines

/