ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Hypersonic aeroheating prediction technique and its trend of development
Received date: 2014-07-23
Revised date: 2014-10-08
Online published: 2014-10-09
The hypersonic aeroheating prediction is a key technique for hypersonic vehicle. Development of hypersonic aeroheating prediction technique is analyzed and discussed. Firstly, a brief development history of hypersonic aeroheating prediction technique and experiment technology is reviewed. Based on that, according to the comparison with the calculation and wind tunnel experiment results for typical configuration, the aeroheating engineering computation calculation method and numerical simulation prediction technique are introduced with emphasis; meanwhile the performance of ground experiment equipment and the status quo of measurement technique are also generalized. Finally, the development trend of hypersonic aeroheating prediction technique is discussed; and the issue need to be studied and solved on aeroheating prediction technique are also raised.
PENG Zhiyu , SHI Yilei , GONG Hongming , LI Zhonghua , LUO Yicheng . Hypersonic aeroheating prediction technique and its trend of development[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 325 -345 . DOI: 10.7527/S1000-6893.2014.0242
[1] Wang G X. Warhead technology[M]. Beijing: China Astronautic Publishing House, 1993: 415 (in Chinese). 王国雄. 弹头技术[M]. 北京: 中国宇航出版社,1993: 415.
[2] Bian Y G, Zhong J K. Heat transfer in high temperature boundary layer[M]. Beijing: Science Press, 1986: 134-147 (in Chinese). 卞荫贵, 钟家康. 高温边界层传热[M]. 北京:科学出版社, 1986: 134-147.
[3] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2): 73-85.
[4] Lees L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds[J]. Journal of Jet Propulsion, 1956, 26(4): 259-269.
[5] Cohen N B. Boundary-layer similar solutions and correlation equations for laminar heat-transfer distribution in equilibrium air at velocities up to 41,100 feet per second, NASA TR R-118 [R]. Washington, D. C.: NASA, 1961.
[6] Tauber M E. A review of high-speed, convective, heat-transfer computation methods, NASA TP-2914 [R]. Washington, D. C.: NASA, 1989.
[7] Engel C D, Praharaj S C. MINIVER upgrade for AVID system, Vol. I: LANMIN user's manual, NASA CR-172212 [R]. Washington, D. C.: NASA,1983.
[8] DeJarnette F R. Calculation of inviscid surface streamlines and heat transfer on shuttle type configurations, NASA CR-111921 [R].Washington, D. C.: NASA, 1971.
[9] DeJarnette F R, Hamilton H H. Aerodynamic heating on 3-D bodies including the effects of entropy swallowing[J]. Journal of Spacecraft and Rockets, 1975, 12(1): 5-12.
[10] Hamilton II H H, Greene F A, Weilmuenster K J. Comparison of heating calculations with experimental data on a modified shuttle orbiter[J]. Journal of Spacecraft and Rockets, 1992, 29(2): 208-215.
[11] Riley C J, DeJarnette F R. An engineering aerodynamic heating method for hypersonic flow[J]. Journal of Spacecraft and Rockets, 1992, 29(3): 327-334.
[12] Hamilton II H H, Greene F A. Approximate method for calculating heating rates on three-dimensional vehicles[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 345-354.
[13] DeJarnette F R, Hamilton H H, Weilmuenster K J. New method for computing convective heating in stagnation region of hypersonic vehicles, AIAA-2008-1261 [R]. Reston: AIAA, 2008.
[14] Hamilton H H, Weilmuenster K J, DeJarnette F R. Approximate method for computing laminar and turbulent convective heating on hypersonic vehicles using unstructured grids, AIAA-2009-4310 [R]. Reston: AIAA, 2009.
[15] Cheatwood F M, Gnoffo P A. User's manual for the Langley aerothermodynamic upwind relaxation algorithm(LAURA), NASA TM-4674 [R]. Washington, D. C.: NASA, 1996.
[16] Walters R W, Slack D C, Cinnella P, et al. A user's guide to GASP, & quot; NASA Langley research, NAG-1-766 and NAG-1-1045 [R]. Washington, D. C.: NASA, 1990.
[17] Wright M J, Candler G. V, Bose D. Data-parallel line relaxation method for the Navier-Stokes equations[J]. AIAA Journal, 1998, 36(9): 1603-1609.
[18] Gnoffo P A. Multi-dimensional, inviscid flux reconstruction for simulation of hypersonic heating on tetrahedral grids, AIAA-2009-0599 [R]. Reston: AIAA, 2009.
[19] Candler G V, Barnhardt M D, Drayna T W. Unstructured grid approaches for accurate aeroheating simulations, AIAA-2007-3959 [R]. Reston: AIAA, 2007.
[20] Roncioni P, Ranuzzi G, Marini M, et al. Experimental and numerical investigation of aerothermal characteristics of hypersonic intermediate experimental vehicle[J]. Journal of Spacecraft and Rockets, 2011, 48(2): 291-302.
[21] Najafiyazdi A. An engineering inviscid-reacting boundary layer method for calculation of hypersonic aerodynamic heating, AIAA-2005-510 [R]. Reston: AIAA, 2005.
[22] Frank L. Advanced hypersonic test facilities[R]. Reston: AIAA, 2002.
[23] Luo Y C, Lyu Z G, Kong R Z, et al. The simulation performance analysis of LENS shock tunnel in the USA[C]//The Fifteenth National Conference on Shock and Shock Tube, 2012: 242-245(in Chinese). 罗义成, 吕治国, 孔荣宗, 等. 美国LENS激波风洞模拟能力分析[C]//第十五届全国激波与激波管学术会议, 2012: 242-245.
[24] Jiang Z L, Yu H R. Progress of the research on hypersonic shock tunnels[J]. Advances in Mechanics, 2009, 39(6): 766-776 (in Chinese). 姜宗林, 俞鸿儒. 高超声速激波风洞研究进展[J]. 力学进展, 2009, 39(6): 766-776.
[25] Guo Y J, Liu Q, Tong F L, et al. Effect of surface coating on the thermal structure of rocket tail[J]. Acta Aerodynamica Sinica, 2007, 25(1): 23-28 (in Chinese). 国义军, 刘强, 童福林, 等. 表面涂漆对火箭尾翼热结构的影响[J]. 空气动力学学报, 2007, 25(1):23-28.
[26] Xu X, Peng Z Y, Shi Y L, et al. The correlative calculation methods of aerodynamic force and heating for hypersonic cone with bulge[J]. Acta Aerodynamica Sinica, 2009, 27(2): 260-264 (in Chinese). 徐翔, 彭治雨, 石义雷, 等. 高超声速锥体表面凸起物分离干扰区气动力/热关联计算方法[J]. 空气动力学学报, 2009, 27(2): 260-264.
[27] Peng Z Y, Chen T, Xiao Y, et al. Study on high accurate and speedy aeroheating engineering calculation method for complex hypersonic vehicle[C]//2st Modern Aerodynamics & Aerothermodynamics Conference, 2011 (in Chinese). 彭治雨, 陈挺, 肖雨, 等. 复杂外形高超声速飞行器气动热高精度快速工程计算方法研究[C]//第二届近代空气动力学和热力学和气动热力学会议, 2011.
[28] Liu X, Deng X G, Mao M L, et al. High-order accurate scheme WCNS_E_5 applied to body heat transfer distributions[J]. Chinese Journal of Computational Physics, 2005, 22(5): 393-398 (in Chinese). 刘昕, 邓小刚, 毛枚良, 等. 高精度格式WCNS_E_5计算物面热流[J]. 计算物理, 2005, 22(5): 393-398.
[29] Yan C, Yu J J, Li J Z. Scheme effect and grid dependency in CFD computation of heat transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130 (in Chinese). 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006, 24(1): 125-130.
[30] Pan S, Feng D H, Ding G H, et al. Grid dependency and convergence in numerical simulation of aero-heating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 493-499 (in Chinese). 潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.
[31] Li Z W. Study on the dissipative effect of approximate riemann solver on hypersonic heatflux simulation[J]. Chinese journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25 (in Chinese). 黎作武. 近似黎曼解对高超声速气动热计算的影响研究[J]. 力学学报, 2008, 40(1): 19-25.
[32] Pan S. Hypersonic aerothermal numerical simulation method and massive parallel computation research[D]. Changsha: National University of Defense Technology, 2010 (in Chinese). 潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙: 国防科学技术大学, 2010.
[33] Shi Q, Li H. The researches on the NND finite element Method and its applications in predicting the heat transfer rate around complicated configurations[J]. Acta Aerodynamica Sinica, 2009, 27(2): 210-213 (in Chinese). 石清, 李桦. 复杂外形飞行器热流的NND有限元数值计算方法[J]. 空气动力学学报, 2009, 27(2): 210-213.
[34] Tong F L, Tang Z G, Guo Y J, et al. Numerical research on local heat flux of cavities[J]. Acta Aerodynamica Sinica, 2012, 30(4): 519-523 (in Chinese). 童福林, 唐志共, 国义军, 等. 凹坑局部干扰热环境数值模拟研究[J]. 空气动力学学报, 2012, 30(4):519-523.
[35] Ma J K, Wu S P, Wang C. Heat flux numerical simulation of hypersonic cone body[J]. Journal of Science Technology and Engineering, 2010, 10(36): 9019-9023 (in Chinese). 马继魁, 吴颂平, 王超. 高超声速钝头体表面热流的数值模拟[J]. 科学技术与工程, 2010, 10(36): 9019-9023.
[36] Gong W J, Tang S, Li S Z. Study on aero-heating numerical simulation for hypersonic vehicle[J]. Journal of Flight Mechanics, 2011, 29(2): 78-81 (in Chinese). 巩伟杰, 唐硕, 李世珍. 高超声速飞行器气动加热三维数值分析方法研究[J]. 飞行力学, 2011, 29(2): 78-81.
[37] He X Z, Zhao H Y, Le J L. Aerodynamic force and heat of hypersonic laminar and turbulent flows[J]. Chinese Journal of Computational Physics, 2008, 25(5): 555-560 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 吸气式高超声速飞行器气动力气动热的数值模拟方法及应用[J]. 计算物理, 2008, 25(5): 555-560.
[38] Baker R L. Low temperature ablator nosetip shape change at angle of attack, AIAA-72-90[R]. Reston: AIAA, 1972.
[39] Huang Z C. Aerospace aerodynamics[M]. Beijing: China Astronautic Publishing House, 1994: 325-328 (in Chinese). 黄志澄. 航天空气动力学[M]. 北京: 中国宇航出版社, 1994: 325-328.
[40] Walker G K. Aero space sciences[J]. Readers Forum, 1960, 27(9): 715-716.
[41] Vaglio L R. Turbulent heat transfer on blunt nosed bodies in two-dimensional and general three-dimensional hypersonic flow[J]. Journal of Aerospace Sciences, 1960, 27(1): 27-38.
[42] Zoby E V. Comparisons of free-flight experimental and predicted heating rates for the space shuttle, AIAA-82-0002 [R]. Reston: AIAA , 1982.
[43] Zhang Z C. Hypersonic aerothermodynamic and thermal protection[M]. Beijing: National Defence Industry Press, 2003: 104-105 (in Chinese). 张志成. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003: 104-105.
[44] Adams J C, Martindale W R. Hypersonic lifting body windward surface flow-field analysis for high angles of incidence, AEDC-TR-73-2 [R]. 1973.
[45] Vanmol D O, Anderson J D. Heat transfer charateristics of hypersonic waveriders with an emphasis on the leading edge effects, AIAA-92-2920 [R]. Reston: AIAA, 1992.
[46] Cheng H K. The blunt-body problem in hypersonic flow at low Reynolds number, AF-1285-A-10 [R]. 1963.
[47] Boylam D E. Laminar heat transfer on sharp and blunt ten-degree cones in conical and parallet low-density flow, AEDC-TR-73-106 [R]. 1973.
[48] Moss J N, Bird G A. Direct simulation of transition flow for hypersonic reentry conditions, AIAA-84-0223[R]. Reston: AIAA, 1984.
[49] Stewart D A, Rakich J V. Catalytic surface effects on space shuttle thermal protection system during earth entry of flights STS-2 through STS-5, NASA CP-2283[R]. Washington, D. C.: NASA, 1983.
[50] Kitamura K, Shima E, Nakamura Y, et al. Evaluation of Euler fluxes for hypersonic heating computations[J]. AIAA Journal, 2010, 48(4): 763-776.
[51] Hollis B R, Collier A S. Turbulent aeroheating testing of Mars science laboratory entry vehicle in perfect-gas nitrogen, AIAA-2007-1208 [R]. Reston: AIAA, 2007.
[52] Hollis B R, Horvath T J, Berry S A. X-33 Rev-F turbulent aeroheating results from test 6817 in NASA Langley 20-inch Mach 6 air tunnel and comparisons with compution, NASA TM-2003-211962 [R]. Washington, D. C.: NASA, 2003.
[53] Edquist K T. Afterbody heating predictions for a Mars science laboratory entry vehicle, AIAA-2005-4817 [R]. Reston: AIAA, 2005.
[54] Mazaheri A, Wood W A. Heating augmentation for short hypersonic protuberances[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 284-291.
[55] Hollis B R. Experimental investigation of project orion crew exploration vehicle aeroheating LaRC 20-inch Mach 6 air tunnel test 6931, NASA TM-2009-215718 [R]. Washington, D. C.: NASA, 2009.
[56] Everhart J L, Berger K T, Merski N R, et al. Aero-heating of shallow cavities in hypersonic freestream flow, NASA TM-2010-216846[R]. Washington, D.C.: NASA, 2010.
[57] Wood W A, Oliver A B. Assessment of CFD hypersonic turbulent heating rates for space shuttle orbiter, AIAA-2011-3327 [R]. Reston: AIAA, 2011.
[58] Palmer G, Polsky S. Heating analysis of the nosecap and leading edges of the X-34 vehicle[J]. Journal of Spacecraft and Rockets, 1999, 36(2): 199-204.
[59] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows, AIAA-78-257 [R]. Reston: AIAA, 1978.
[60] Cebeci T. Behavior of turbulent flow near a porous wall with pressure gradient[J]. AIAA Journal, 1970, 8(12): 2152-2156.
[61] Tang C Y, Trumble K A, Campbell C H, et al. Numerical simulations of the boundary layer transition flight experiment, AIAA-2010-453 [R]. Reston: AIAA, 2010.
[62] Amar A, Calvert N, Kirk B. Development and verification of the charring ablating thermal protection implicit system solver, AIAA-2011-144 [R]. Reston: AIAA, 2011.
[63] Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions 2: entropy production at shocks[J]. Journal of Computational Physics, 2009, 28(15): 5410-5436.
[64] Wood W A, Kleb W L, Tang C Y, et al. Comparison of CFD predictions with shuttle global flight thermal imagery and discrete surface measurements, AIAA-2010-454 [R]. Reston: AIAA, 2010.
[65] Zhang X H, Wu Y Z, Wang J F. Aero-heating numerical simulation of axisymmetric reenter vehicle body[J]. Chinese Journal of Applied Mechanics, 2012, 29(3): 284-290 (in Chinese). 张向洪, 伍贻兆, 王江峰. 轴对称再入舱模型气动热特性数值模拟研究[J]. 应用力学学报, 2012, 29(3): 284-290.
[66] Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physical Fluids, 1963, 6(1): 1518-1519.
[67] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. London: Oxford University Press, 1994: 218-256.
[68] Wen C Y, Chen Y S, Liang S M, et al. Numerical simulations of nonequilibrium flows over rounded models at reentry speeds, AIAA-2012-5906 [R]. Reston: AIAA, 2012.
[69] Pham-Van D G, Erwin D, Muntz E P. Nonequilibrium molecular motion in a hypersonic shock wave[J]. Science, 1989, 245(1): 624-626.
[70] Ivanov M S,Gimelshein S F.Computational hypersonic rarefied flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 469-505.
[71] Votta R, Ranuzzi G, Di Clemente M, et al. Evaluation of local effects of transitional Knudsen number on shock wave boundary layer interactions, AIAA-2007-4545[R]. Reston: AIAA, 2007.
[72] Moss J N, Bird G A. Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions[J]. AIAA Journal, 2005, 43(12):2565-2573.
[73] Hash D B, Hassan H A. A hybrid DSMC/Navier-Stokes solver, AIAA-95-0410 [R]. Reston: AIAA, 1995.
[74] Aktas O, Aluru N R. A combined continuum/DSMC technique for multiscale analysis of microuidic filters[J]. Journal of Computational Physics, 2002, 178(2): 342-372.
[75] Deschenes T R, Boyd I D, Schwartzentruber T E. Incorporating vibrational excitation in a hybrid particle-continuum method, AIAA-2008-4106[R]. Reston: AIAA, 2008.
[76] Schwartzentruber T E, Scalabrin L C, Boyd I D. Hybrid particle-continuum simulations of non-equilibrium hypersonic blunt body flow fields, AIAA-2006-3602 [R]. Reston: AIAA, 2006.
[77] Caflisch R, Chen H, Luo E D, et al. A hybrid method that interpolates between DSMC and CFD, AIAA-2006-987 [R]. Reston: AIAA, 2006.
[78] Schwartzentruber T E, Scalabrin L C, Modular I D. Implementation of a hybrid DSMC-NS algorithm for hypersonic non-equilibrium flows, AIAA-2007-613 [R]. Reston: AIAA, 2007.
[79] Schwartzentruber T E, Scalabrin L C, Boyd I D. Hybrid particle-continuum simulations of low Knudsen number hypersonic flows, AIAA-2007-3892 [R]. Reston: AIAA, 2007.
[80] Boyd I D, Trumble K, Michael J W. Nonequilibrium particle and continuum analyses of stardust entry for near continuum conditions, AIAA-2007-4543 [R]. Reston: AIAA, 2007.
[81] Burt J M, Boyd I D. A multiscale particle approach for continuum/rarefied flow simulation, AIAA-2008-1184 [R]. Reston: AIAA, 2008.
[82] Ozawa T, Wang A, Levin D A, et al. Development of a coupled DSMC-particle photon Monte Carlo method for simulating atomic radiation in hypersonic reentry flows, AIAA-2008-3916 [R]. Reston: AIAA, 2008.
[83] Schwartzentruber T E, Boyd I D. Investigation of continuum breakdown in hypersonic flows using a hybrid DSMC-NS algorithm, AIAA-2008-4108[R]. Reston: AIAA, 2008.
[84] Liu C P. Measurement of aero-heating and thermal protection test[M]. Beijing: National Defence Industry Press, 2013: 115-116 (in Chinese). 刘初平. 气动热与热防护实验热流测量[M]. 北京: 国防工业出版社, 2013: 115-116.
[85] Qin F, He C, Zeng L, et al. Experimental research of heat-transfer measurements on stagnation points[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1072-1077(in Chinese). 秦峰, 何川, 曾磊,等. 驻点热流测量实验技术研究[J]. 西南交通大学学报, 2013, 48(6): 1072-1077.
[86] Liebert C H. An investigation of the compatibility of radiation and convection heat flux measurements, AIAA-96-2272 [R]. Reston: AIAA, 1996.
[87] Murthy A V, Tsai B K, Sauders R D. Radiative calibration of heat-flux sensors at NIST: Facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105 (2): 293-305.
[88] Filtz J R, Valin T, Hameury J, et al. New vacuum blackbody cavity for heat flux meter calibration[J].International Journal of Thermophysical, 2009, 30(1): 236-248.
[89] Zeng L, Shi Y A, Kong R Z, et al. Study on film resistance thermometer principle error analysis and data processing method[J]. Journal of Experiments in Fluid Mechanic, 2002, 25(1): 79-83 (in Chinese). 曾磊, 石友安, 孔荣宗, 等. 薄膜电阻温度计原理性误差分析及数据处理方法研究[J]. 实验流体力学, 2002, 25(1): 79-83.
[90] Zeng L, Gui Y W, He L X, et al. Study on data processing methods for coaxial thermal couple heat-flux sensor[J]. Journal of Engineering Thermophysics, 2009, 30(4): 661-664 (in Chinese). 曾磊, 桂业伟, 贺立新, 等. 镀层式同轴热电偶数据处理方法研究[J]. 工程热物理学报, 2009, 30(4): 661-664.
[91] Zhou J S, Kong R Z, Jiang T. Study on infrared thermal test technique in shock wind tunnel[J]. Journal of Jianghan University: Natural Science, 2010, 38(1): 36-39 (in Chinese). 周嘉穗, 孔荣宗, 江涛. 激波风洞红外测热实验技术研究[J]. 江汉大学学报: 自然科学版, 2010, 38(1): 36-39.
[92] Li M, Yang Y G, Zhu Z W. Experiment of the characteristic of aerodynamic heating on CAV using infrared thermograpy[J]. Infrared and Laser Engineering, 2013, 42(2): 285-289 (in Chinese). 李明, 杨彦广, 祝智伟. 利用红外热图开展通用航空飞行器气动热特性实验[J]. 红外与激光工程, 2013, 42(2): 285-289.
[93] Zhou J S, Zhang K L, Jiang T, et al. Preliminary experimental study on temperature sensitive luminescent thermography used in shock tunnel[J]. Journal of Experiments in Fluid Mechanic, 2013, 27(5): 70-82 (in Chinese). 周嘉穗, 张扣立, 江涛, 等. 激波风洞温敏热图技术初步实验研究[J]. 实验流体力学, 2013, 27(5): 70-82.
/
〈 | 〉 |