Experiments and Numerical Simulations

Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack

  • LUO Wenli ,
  • LI Daochun ,
  • XIANG Jinwu
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-06-04

  Revised date: 2014-09-22

  Online published: 2014-10-08

Supported by

National Natural Science Foundation of China (91216102, 11402014)

Abstract

During the flight of air-breathing hypersonic vehicles, the atmospheric turbulence or other external disturbances may result in high angle of attack conditions. In order to study the aerodynamic performances influenced by high angle of attack, numerical simulations are performed on the flow field of a typical air-breathing hypersonic vehicle. The flow field and aerodynamic characteristics are obtained by solving the Reynolds-averaged Navier-Stokes (RANS) equations using standard k-ε turbulence models. The performances of vehicle, inlet and the all-moving tails are analyzed and explained based on the flow field characteristics especially at high angle of attack. The investigation indicates that there is coupling between aerodynamics and propulsive system. At high angle of attack, aerodynamic parameters exhibit nonlinear characteristics, meanwhile, the lift-to-drag ratio begins to reduce and the longitudinal instability enhances. The inlet has poor performance at high angle of attack, resulting in the decrease of thrust provided by the engine, which is not conducive to the normal operation of the engine. However, on the other hand, the decrease of thrust will reduce the longitudinal instability of the vehicle. In addition, the control efficiency of the all-moving tails reduces and consequently makes trimming difficult.

Cite this article

LUO Wenli , LI Daochun , XIANG Jinwu . Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 223 -231 . DOI: 10.7527/S1000-6893.2014.0266

References

[1] Yentsch R J, Gaitonde D V, Kimmel R. Performance of turbulence modeling in simulation of the HIFiRE-1 flight test[J]. Journal of Spacecraft and Rockets, 2014, 51(1): 117-127.

[2] Murphy K J, Nowak R J, Thompson R A, et al. X-33 hypersonic aerodynamic characteristics[J].Journal of Spacecraft and Rockets, 2001, 38(5): 670-683.

[3] Engelund W C, Holland S D, Cockrell C E, et al. Aerodynamic database development for the Hyper-X airframe-integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 803-810.

[4] Holland S D, Woods W C, Engelund W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 828-835.

[5] Fan X Q, Li H, Jia D, et al. Experimental investigation on forced boundary-layer transition of axisymmetric inlet and numerical verification[J]. Journal of Aircraft, 2006, 43(5): 1544-1549.

[6] Skujins T, Cesnik C E S, Oppenheimer M W, et al. Canard-elevon interactions on a hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 90-100.

[7] Zeng K C, Xiang J W. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808(in Chinese). 曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4): 798-808.

[8] Zeng K C, Xiang J W, Li D C. Aeroservoelastic modeling and analysis of a canard-configured air-breathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2013, 26(4): 831-840.

[9] Xiang J W, Zeng K C, Nie L. Elastic effects on flight mechanics of waverider[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1306-1310 (in Chinese). 向锦武, 曾开春, 聂璐. 考虑弹性影响的乘波体飞行动力学特性[J]. 北京航空航天大学学报, 2012, 38(10): 1306-1310.

[10] Gupta K K, Voelker L S. Aeroelastic simulation of hy-personic flight vehicles[J]. AIAA Journal, 2012, 50(3): 717-723.

[11] Chen Q, Si F F, Chen J Q, et al. Study of protuberance in supersonic flow with RANS/LES method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1531-1537 (in Chinese). 陈琦, 司芳芳, 陈坚强, 等. RANS/LES 在超声速突起物绕流中的应用研究[J]. 航空学报, 2013, 34(7): 1531-1537.

[12] Cui K, Hu S, Li G L, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China Technological Sciences, 2013, 56(8): 1980-1988.

[13] Gollan R J, Smart M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4): 832-838.

[14] Taguchi H, Kobayashi H, Kojima T, et al. Research on hypersonic aircraft using pre-cooled turbojet engines[J]. Acta Astronautica, 2012, 73(1): 164-172.

[15] Mirmirani M, Wu C, Clark A, et al. Modeling for con-trol of a generic airbreathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco: AIAA, 2005: 6256.

[16] Li S X. Typical hypersonic flow characteristics[M]. Beijing: National Defence Industry Press, 2007: 18-39(in Chinese). 李素循. 典型外形高超声速流动特征[M]. 北京: 国防工业出版社, 2007: 18-39.

[17] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.

Outlines

/