ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Operational identification of time-varying modal parameters for thermal structures of high-speed aerial vehicles
Received date: 2014-07-01
Revised date: 2014-09-23
Online published: 2014-09-26
Supported by
National Natural Science Foundation of China (11372036, 11402022); Beijing Institute of Technology Foundation for Basic Research (20120142009)
The high-speed aerial vehicles are unavoidably impacted by the aerodynamic heating effect due to their high speed, which may further result in the time-varying characteristics of their structures. The theoretical and finite element method (FEM)-based numerical approaches hardly acquire the real modal parameters of the in-flight (operational) aerial vehicles. Focusing on this problem, the parametric time-frequency-domain maximum likelihood method is introduced into the application of the high-speed aerial vehicles and the time-varying modal parameters are estimated by this parametric time-frequency-domain maximum likelihood method. Based on a high-fidelity simulation example, it is proved that the introduced method can identify the modal frequency and mode shapes even in the low signal noise ratio (SNR) cases and the method is suitable for the modal parameter estimation of thermal structures of high-speed aerial vehicles with notable time-varying natures, which can theoretically support the relative engineering studies and applications.
ZHOU Sida , LIU Li , LI Yulin , ZHOU Xiaochen . Operational identification of time-varying modal parameters for thermal structures of high-speed aerial vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 373 -380 . DOI: 10.7527/S1000-6893.2014.0267
[1] Yu Y H, Li S, Wang Y D. Study on dynamic characteristics of metallic thermal protection system with thermal environ[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1): 171-175 (in Chinese). 余艳辉, 李书, 王远达. 热环境下的金属热防护系统的动力学特性研究[J]. 振动测试与诊断, 2013, 33(1): 171-175.
[2] Zhang L, Brincker R, Andersen P. An overview of operational modal analysis: major development and issues[C]//1st International Operational Modal Analysis Conference (IOMAC), 2005: 179-190.
[3] Wu Z Q, Cheng H, Zhang W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 334-342 (in Chinese). 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2): 334-342.
[4] Bai Y H. Research of structural modal experiment and parameter identification for high speed vehicles under flying environments[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 白云鹤. 高速飞行器飞行环境下结构模态试验及参数识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[5] Poulimenos A G, Fassois S D. Output-only stochastic identification of a time-varying structure via functional series TARMA models[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1180-1204.
[6] Zhou S D, Heylen W, Sas P, et al. Parametric modal identification of time-varying structures and the validation approach of modal parameters[J]. Mechanical Systems and Signal Processing, 2014, 47(1): 94-119.
[7] Xu X, Shi Z Y, You Q. Identification of linear time-varying systems using a wavelet-based state-space method[J]. Mechanical Systems and Signal Processing, 2012, 26(6): 91-103.
[8] Zhou S D, Heylen W, Sas P, et al. Maximum likelihood estimator of operational modal analysis for linear time-varying structures in time-frequency domain[J]. Journal of Sound and Vibration, 2014, 333(11): 2339-2358.
[9] Verboven P. Frequency-domain system identification for modal analysis[D]. Brussels: Vrije Universiteit Brussel, 2002.
[10] Zhou S D, Liu L, Yang W, et al. Matrix fraction polynomial model-based least square estimation of modal parameters for linear time-varying structures[J]. Journal of Vibration and Shock, 2014, 33(6): 118-123 (in Chinese). 周思达, 刘莉, 杨武, 等. 基于矩阵分式多项式时变结构模态参数最小二乘辨识[J]. 振动与冲击, 2014, 33(6): 118-123.
[11] Zhou S D. Study on theory and experiment of time-frequency-domain modal parameter estimation for linear time-varying mechanical structures[D]. Beijing: Beijing Institute of Technology, 2012 (in Chinese). 周思达. 线性时变结构时频域模态参数辨识理论及实验研究[D]. 北京: 北京理工大学, 2012.
[12] McNamara J J, Friedmann P P, Powell K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow [J]. AIAA Journal, 2008, 46(10): 2591-2610.
[13] Zhu H, Liu L, Zhou S, et al. Integrated aerodynamic thermal structure design optimization method of lifting surfaces [J]. Journal of Aircraft, 2012, 49(5): 1521-1526.
[14] Li Y L. Studies on aerodynamic-structural-thermal multidisciplinary design optimization and method of flight vehicles[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese). 李昱霖. 气动热结构多学科分析及高效优化策略研究 [D]. 北京: 北京理工大学, 2014.
[15] Roshan-Ghias A, Shamsollahi M B, Mobed M, et al. Estimation of modal parameters using bilinear joint time-frequency distributions[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2125-2136.
/
〈 | 〉 |