Fluid Mechanics and Flight Mechanics

Experiment of flame crossover between main stage and pilot stage under centrifugal force effect in curved duct

  • LI Lin ,
  • LIN Yuzhen ,
  • ZHANG Chi
Expand
  • National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China

Received date: 2013-12-25

  Revised date: 2014-07-04

  Online published: 2014-09-26

Abstract

The ram rotor engine is a novel technology combined of ramjet engines and gas turbine engines, having simple configuration. The flame stability and propagation are under strong effects of centrifugal force in the combustor of ram rotor engine. Experimental research work is carried out to study the effects of centrifugal force on the flame crossover between two stages. According to the characteristics of combustion under centrifugal force, a curved duct is used to simulate the centrifugal effect. Tests of flame crossover between pilot stage and main stage are carried out under ambient pressure and temperature, with the inlet air velocity ranging from 10 m/s to 70 m/s. The effects of centrifugal force, fuel allocation proportion and fuel injection initial angle on the flame crossover are investigated in the tests. The results of tests preliminarily verify the feasibility of this combustion scheme and lay a foundation for the research of ram rotor engine combustor.

Cite this article

LI Lin , LIN Yuzhen , ZHANG Chi . Experiment of flame crossover between main stage and pilot stage under centrifugal force effect in curved duct[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(2) : 484 -491 . DOI: 10.7527/S1000-6893.2014.0136

References

[1] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.

[2] Holcomb F H, Sohn C W, Tamm G, et al. Ramgen power systems for military engine applications, ADA478293[R]. 2007.

[3] Lawlor S P. Apparatus and method for fuel-air mixing before supply of low pressure lean premix to combustor for rotating ramjet engine driving a shaft: U.S. 6263660 [P]. 2001-07-24.

[4] Lawlor S P, Kushnick S B. Compact rotary ramjet engine with rapidly interchangeable cartridge containing hot section rotating elements:U.S. 20030014961[P]. 2001-07-23.

[5] Lawlor S P. Method and apparatus for power generation using rotating ramjets: U.S. 6347507[P]. 2002-02-19.

[6] Lawlor S P. Ramjet engine for power generation: U.S. 6446425[P]. 2002-09-10.

[7] Koopman A. Ramgen rotor cartridge for the pre-prototype ramgen engine, FC26-00NT40915[R]. Bellevue, WA: Ramgen Power Systems, Inc., 2003.

[8] Sohn C W, Holcomb F H, Baldwin P, et al. Ramgen power systems-supersonic component tenchnology for military engine applications, ADA482178[R]. Bellevue, WA: Ramgen Power Systems, Inc., 2006.

[9] Picard M, Rancourt D, Plante J S, et al. Rim-rotor rotary ramjet engine, Part 2: quasi-one-dimensional aerothermodynamic design[J]. Journal of Propulsion and Power, 2012, 28(6): 1304-1314.

[10] Rancourt D, Picard M, Denninger M, et al. Rim-rotor rotary ramjet engine, Part 1: structural design and experimental validation[J]. Journal of Propulsion and Power, 2012, 28(6): 1293-1303.

[11] Lewis G D, Smith C E. Investagation of centrifugal force and Reynolds number effects on combustion processes,ADA013912[R]. 1975.

[12] Yatsufusa T, Chang X, Taki S. Experiments on flame holding position of the fin-less projectile in ram accelerator, AIAA-2001-1765[R]. Reston: AIAA, 2001.

[13] Lapsa A P, Dahm W J. Hyperacceleration effects on turbulent combustion in premixed step-stabilized flames[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1731-1738.

[14] Dahm W J, Lapsa A P, Hamlington P E. Inside-out rotary ramjet turbogenerator[C]//Proceedings of the International Energy Conversion Engineering Conference, 2006: 1221-1235.

[15] Guo X H. Investigation of spary combustion characteristic in conditions of high centrifugal acceleration[D]. Beijing: Beihang University, 2010 (in Chinese). 郭新华. 高离心加速度条件下液雾燃烧基础研究[D]. 北京: 北京航空航天大学, 2010.

[16] Wang Z Q. Effect of the centrifugal force on flame stabilization in the curved combustor[D]. Beijing: Beihang University, 2007 (in Chinese). 汪志强. 弯曲燃烧室强离心力条件下的火焰稳定研究[D]. 北京: 北京航空航天大学, 2007.

[17] An S, Lin Y Z, Zhang C, et al. Characterization of flame stabilization for V-gutter in centrifugal force field[J]. Journal of Aerospace Power, 2009, 24(5): 1011-1015 (in Chinese). 安帅, 林宇震, 张弛, 等. 离心力场下V型火焰稳定器火焰稳定性的研究[J]. 航空动力学报, 2009, 24(5): 1011-1015.

[18] Li L, Lin Y Z, Guo X H, et al. Characteristics of lean blowout limit for backward step-stabilized flame with centrifugal force effect[J]. Journal of Aerospace Power, 2011, 26(4): 822-828 (in Chinese). 李林, 林宇震, 郭新华, 等. 离心条件下后台阶贫油熄火特性[J]. 航空动力学报, 2011, 26(4): 822-828.

[19] Guo X H, Lin Y Z, Huang Y, et al. Cirterion number determination for rotating combustion[C]//Chinese Society of Aeronatics and Astronautics 14th Combustion and Heat and Mass Transfer Symposium, 2007: 444-451. 郭新华, 林宇震, 黄勇, 等. 旋转燃烧准则数的确定[C]//中国航空学会第十四届燃烧与传热传质学术交流会, 2007: 444-451.

[20] Lefebvre A H, Ballal D R. Gas turbine combustion: alternative fuels and emissions[M]. Hoboken: CRC Press, 2010.

[21] Lin Y Z, Li L, Zhang C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57 (in Chinese). 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014, 35(1): 46-57.

[22] Fuller R P, Wu P K, Kirkendall K A, et al. Effects of injection angle on atomization of liquid jets in transverse airflow[J]. AIAA Journal, 1997, 38(1): 64-72.

[23] Fuller R P, Wu P K, Kirkendall K A, et al. Effects of injection angle on the breakup processes of liquid jets in subsonic crossflows[C]//33rd Joint Propulsion Conference and Exhibit, 1997.

Outlines

/