Aeroelasticity

Gust alleviation active control based on CFD reduced-order models

  • NIE Xueyuan ,
  • YANG Guowei
Expand
  • Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2014-08-01

  Revised date: 2014-08-18

  Online published: 2014-09-12

Abstract

In flight, aircraft suffers atmospheric turbulence and the flight quality degrades. Gust load alleviation is an important technique for improving the performance of aircraft. Most of the existing gust response analysis focuses on discrete gust while study on continuous gust attracts little attention. The continuous turbulence time domain signals can be obtained with the shaping filter. In transonic regime, computational fluid dynamics (CFD)-based gust loads reduced-order models (ROM) in the state-space form are built by the system identification method. Furthermore, to design a feasible controller, the balanced truncation approach is used to reduce the model order. Model predictive control (MPC) algorithm is adopted to control the deflection of the control surface so that gust load alleviation is realized. The AGARD445.6 wing configuration is used as a numerical example to demonstrate the present gust ROM methodology and alleviation effects. It has been shown that the gust ROM with MPC law can suppress the wing root bending moment effectively; meanwhile, the deflection of the control surface can satisfy the hard constrain.

Cite this article

NIE Xueyuan , YANG Guowei . Gust alleviation active control based on CFD reduced-order models[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1103 -1111 . DOI: 10.7527/S1000-6893.2014.0192

References

[1] Chen L, Wu Z G, Yang C, et al. Active control and wind tunnel test verification of multi control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256 (in Chinese). 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256.
[2] Zhang W, Zhang W W, Quan J G, et al. Gust alleviation of transonic wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 962-969 (in Chinese). 张慰, 张伟伟, 全景阁, 等. 跨声速机翼阵风减缓研究[J]. 力学学报, 2012, 44(6): 962-969.
[3] Raveh D E. CFD-based models of aerodynamic gust response, AIAA-2006-2022[R]. Reston: AIAA, 2006.
[4] Chen G, Wang X, Li Y M. A reduced-order-model-based multiple-in multiple-out gust alleviation control law design method in transonic flow[J]. Science China Technological Sciences, 2014, 57(2): 368-378.
[5] Moulin B, Karpel M. Gust loads alleviation using special control surfaces[J]. Journal of Aircraft, 2007, 44(1): 17-24.
[6] Shao K, Wu Z G, Yang C, et al. Design of an adaptive gust response alleviation control system: simulations and experiments[J]. Journal of Aircraft, 2010, 47(3): 1022-1029.
[7] Ricci S, Scotti A. Gust response alleviation on flexible aircraft using multi-surface control, AIAA-2010-3117[R]. Reston: AIAA, 2010.
[8] Zeng J, Moulin B, Callafon R D. Adaptive feedforward control for gust load alleviation[J]. Journal of Guidance, Control, and Dynamic, 2010, 33(3): 862-872.
[9] Raveh D E. Gust-response analysis of free elastic aircraft in the transonic flight regime[J]. Journal of Aircraft, 2011, 48(4): 1204-1211.
[10] Robert E B. Development, verification and use of gust modeling in the nasa computational fluid dynamics code fun3d, NASA/TM-2012-217771[R]. Washington, D. C.: NASA, 2012.
[11] Chen G, Li Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese). 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701.
[12] Liu X Y, Yang C, Wu Z G. Wavelet based reduced-order method for unsteady aerodynamics applicable to aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1149-1155 (in Chinese). 刘晓燕, 杨超, 吴志刚. 适用于气动弹性的小波非定常气动力降阶方法[J]. 航空学报, 2010, 31(6): 1149-1155.
[13] Dillsaver M J, Cesnik C E, Kolmanovsky I V. Gust load alleviation control for very flexible aircraft. AIAA-2011-6368[R]. Reston: AIAA, 2011.
[14] Ma D L. An improvement of the digital simulation method for atmospheric turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 1990(3): 57-63 (in Chinese). 马东立.大气紊流数字仿真的改进方法[J]. 北京航空航天大学学报, 1990(3): 57-63.
[15] Yang G W, Wang J K. Gust response prediction with CFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153 (in Chinese). 杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2): 145-153.
[16] Nie X Y, Yang G W. Identification of unsteady aerodynamic model CFD-Based for aeroelastic numerical computation[J]. Journal of Vibration and Shock, 2014, 33(20): 20-25 (in Chinese). 聂雪媛, 杨国伟. 基于CFD气动力辨识模型的气动弹性数值计算[J]. 振动与冲击, 2014, 33(20): 20-25.
[17] Xiong G, Yang C. Application of balanced truncation method on aeroservoelastic model reduction[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3): 168-170 (in Chinese). 熊纲, 杨超. 平衡截断方法在气动伺服弹性系统模型降阶中的应用[J]. 航空学报, 2001, 22(3): 168-170.
[18] Carson Y J E. Agard standard aeroelastic configurations for dynamic response I-wing 445.6, AGARD-R-756[R]. Washington, D. C.: NASA Langley Research Center, 1988.

Outlines

/