ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Evaluating aircraft's stealth performance from the perspective of detection probability
Received date: 2014-05-04
Revised date: 2014-08-15
Online published: 2014-09-05
Since radar cross section (RCS) mean values cannot provide enough information to evaluate aircraft's stealth performance, a method using signal detection probability theory is proposed, which can provide more sufficient information. The relationships between target's RCS data and false alarm probability, detection probability, detection distance, signal to noise ratio (SNR) etc. are derived. Four typical aircrafts' stealth performance is analyzed as examples and any other target's data with certain radar parameters can be analyzed in the same way. Instead of fluctuation models, probability density function (PDF) of target's original RCS data is utilized directly when detection probability is computed numerically; this method can eliminate model fitting error without introducing any unacceptable computation errors. Computation results show that if detection is based on a single observation, the detection probability decreases when target's RCS mean to medium value ratio increases as well as the RCS value range decreases; a significant difference of detection probability can be found when the ratio differs by three times or more; under the assumption of fast fluctuation, incoherent integration gain may be greater than Nin even if Nin is very small; Nin is the number of integration pulses here.
CHEN Shichun , HUANG Peilin , JI Jinzu . Evaluating aircraft's stealth performance from the perspective of detection probability[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1150 -1161 . DOI: 10.7527/S1000-6893.2014.0187
[1] Wikipedia. Horten Ho 229[EB/OL]. [ 2014-04-04]. http://en.wikipedia.org/wiki/Horten_Ho_229.
[2] Lee S W, Mittra R. Scattering of electromagnetic waves by a moving cylinder in free space[J]. Canadian Journal of Physics, 1967, 45(9): 2999-3008.
[3] Liu Z H, Huang P L, Wu Z. Frequency response scattering characteristic of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 643-648 (in Chinese). 刘战合, 黄沛霖, 武哲. 飞行器目标频率响应散射特性[J]. 航空学报, 2009, 30(4): 643-648.
[4] Yang T. Study on demands for suppressing military aircrafts' detectable signature[J]. Electronics Optics & Control, 2011, 18(8): 40-45 (in Chinese). 杨涛. 军用飞机特征信号抑制要求研究[J]. 电光与控制, 2011, 18(8): 40-45.
[5] Johnston S L. Target model pitfalls (illness, diagnosis, and prescription)[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 715-720.
[6] Jamil K, Burkholder R J. Radar scattering from a rolling target floating on a time-evolving rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3330-3337.
[7] Shnidman D A. Radar detection probabilities and their calculation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 928-950.
[8] Farina A, Russo A. Radar detection of correlated targets in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(5): 513-532.
[9] Trueman C W, Kubina S J. Radar cross-section of a generic aircraft at HF frequencies[J]. Canadian Journal of Electrical & Computer Engineering, 1993, 18(2): 59-64.
[10] Shnidman D A. Radar detection in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1056-1067.
[11] Ray P, Varshney P K. Radar target detection framework based on false discovery rate[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1277-1292.
[12] Zikidis K, Skondras A, Tokas C. Low observable principles, stealth aircraft and anti-stealth technologies[J]. Journal of Computations & Modeling, 2014, 4(1): 129-165.
[13] Bahret W. The beginning of stealth technology[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4): 1377-1385.
[14] Li Y, Wu Z, Huang P L, et al. A new method for analyzing integrated stealth ability of penetration aircraft[J]. Chinese Journal of Aeronautics, 2010, 23(2): 187-193.
[15] Yan B X, Huang J. Stealthy effectiveness of the breaching aircraft[J]. Journal of Yunnan University: Natural Sciences, 2005, 27(5A): 127-135 (in Chinese). 颜丙新, 黄俊. 突防飞机的隐身效能分析[J]. 云南大学学报: 自然科学版, 2005, 27(5A): 127-135.
[16] Barton D K. Radar system analysis[M]. New Jersey: Prentice-Hall Inc., 1964: 26-27, 73-75.
[17] Mahafza B R, Elsherbeni A Z. MATLAB simulations for radar systems design[M]. Zhu F G, Huang X T, Li X Y, et al., translated. Beijing: Publishing House of Electronics Industry, 2009: 58 (in Chinese). Mahafza B R, Elsherbeni A Z. 雷达系统设计MATLAB仿真[M]. 朱富国, 黄晓涛, 黎向阳, 等, 译. 北京: 电子工业出版社, 2009: 58.
[18] Difranco J V, Rubin W L. Radar detection[M]. New Jersey: Prentice-Hall Inc., 1968: 289-394.
[19] Zhang X, Ye L W, Li S H, et al. Aerial radar theory[M]. Beijing: National Defense Industry Press, 2012: 199-206, 271 (in Chinese). 张欣, 叶灵伟, 李淑华, 等. 航空雷达原理[M]. 北京: 国防工业出版社, 2012: 199-206, 271.
[20] Marcum J I. A statistical theory of target detection by pulsed radar, Rand Research Memo. RM-754[R]. Santa Monica, CA: Rand Corporation, 1947.
[21] Richards M A. Fundamentals of radar signal processing[M]. Xing M D, Wang T, Li Z F, et al., translated. Beijing: Publishing House of Electronics Industry, 2008: 53 (in Chinese). Richards M A. 雷达信号处理基础[M]. 邢孟道, 王彤, 李真芳, 等, 译. 北京: 电子工业出版社, 2008: 53.
[22] Urkowitz H. A closed form for the noncoherent gain factor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 943-944.
[23] Curry G R. Radar system performance modeling[M]. 2nd ed. Norwood, MA: Artech House Inc., 2005: 95-97.
[24] Stimson G W. Introduction to airborne radar[M]. 2nd ed. New Jersey: Scitech Publishing Inc., 1998: 131-135.
/
〈 |
|
〉 |