ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A Track-to-track Association Algorithm Based on Maximizing the Consistent Association Number
Received date: 2013-12-11
Revised date: 2014-08-08
Online published: 2014-08-20
Track-to-track association (TTTA) is a fundamental problem in the multi-sensor data fusion system. It is the precondition for sensor bias estimation and track-to-track fusion. The inherent systematic biases of sensors may cause the position estimates of a target to deviate far from the real target state. TTTA algorithms based upon the global minimum distance criteria require accurate sensor bias estimate to register the sensors. For TTTA problem in the presence of sensor biases, we define a new concept of consistent association number on the basis of indirect evaluation upon the association matrix, propose the criteria of maximal consistent association number, and develop a new TTTA algorithm in the framework of robust alternate iteration. Compared with the distance function, the consistent association number, which is a discrete variable, can relax the high precision requirement for sensor bias estimation. Simulation results demonstrate the effectiveness of the proposed algorithm.
TIAN Wei , WANG Yue , SHAN Xiuming , YANG Jian . A Track-to-track Association Algorithm Based on Maximizing the Consistent Association Number[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(11) : 3115 -3122 . DOI: 10.7527/S1000-6893.2014.0179
[1] Blackman S S, Popoli R. Design and analysis of modern tracking systems[M]. Boston: Artech House, 1999: 626-629, 689-697.
[2] Singer R A, Kanyuck A J. Computer control of multiple site track correlation[J]. Automatica, 1971, 7(4):455-463.
[3] Li X R, Bar-Shalom Y. Tracking in clutter with nearest neighbor filters: analysis and performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 995-1010.
[4] O'Neil S D, Pao L Y. Multisensor fusion algorithms for tracking[C]//Proceedings of the American Control Conference, 1993: 859-863.
[5] Deb S, Yeddanapudi M, Pattipati K, et al. A generalized S-D assignment algorithm for multisensor-multitarget state estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 523-538.
[6] He Y, Peng Y N, Lu D J. Fuzzy track correlation algorithms for multitarget and multisensory tracking[J]. Acta Electronica Sinica, 1998, 26(3): 15-19.(in Chinese) 何友, 彭应宁, 陆大金. 多目标多传感器模糊双门限航迹相关算法[J]. 电子学报, 1998, 26(3):15-19.
[7] Tian W, Wang Y, Shan X M, et al. Analytic performance prediction of track-to-track association with biased data in multi-sensor multi-target tracking scenarios[J]. Sensors, 2013, 13(9): 12244-12265.
[8] Li Z, Chen S, Leung H, et al. Joint data association, registration, and fusion using EM-KF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2):496-507.
[9] Levedahl M D. An explicit pattern matching assignment algorithm[C]//Proceedings of SPIE, 2002, 4728: 461-469.
[10] Levedahl M D. Method and system for assigning observations: USA, 7092924[P]. 2006-08-15.
[11] Danford S, Kragel B, Poore A. Joint MAP bias estimation and data association: algorithms[C]//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2007, 6699: 1E-1-1E-18.
[12] Danford S, Kragel B, Poore A. Joint MAP bias estimation and data association: simulations[C]//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2007, 6699: 15-1-15-14.
[13] Papageorgiou D J, Sergi J D. Simultaneous track-to-track association and bias removal using multistart local search[C]//Proceedings of IEEE Aerospace Conference, 2008: 1-14.
[14] Tian W, Wang Y, Shan X M, et al. Robust sensor registration with the presence of misassociations and ill conditioning[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2013, 11: 2318-2321.
[15] Tian W, Wang Y, Shan X M, et al. Robust method for joint track association and sensor bias estimation[J]. Journal of Tsinghua University: Science and Technology, 2013, 53(7): 946-950. (in Chinese) 田威, 王钺, 山秀明, 等. 稳健的联合TTTA与系统误差估计[J]. 清华大学学报:自然科学版, 2013, 53(7): 946-950.
[16] Tian W, Wang Y, Shan X M, et al. Misassociation detection method based on the residual errors of system bias estimation[J]. Systems Engineering and Electronics, 2013, 35(10): 2062-2068. (in Chinese) 田威, 王钺, 山秀明, 等. 基于系统误差估计残差的错误关联检测方法[J]. 系统工程与电子技术, 2013, 35(10): 2062-2068.
[17] Tian X, Bar-Shalom Y. Sliding window test vs. single time test for track-to-track association[C]//Proceeding of 11th International Conference on Information Fusion, 2008: 1-8.
[18] Lin X, Kirubarajan T, Bar-Shalom Y. Multisensor bias estimation using local tracks without a priori association[C]//Proceedings of SPIE, 2003, 5204: 334-345.
[19] Kaplan L, Bar-Shalom Y, Blair W. Assignment costs for multiple sensor track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 655-677.
[20] Leung H, Blanchette M. A least squares fusion of multiple radar data[C]//Proceedings of Radar, 1994: 364-369.
[21] Mori S, Chong C. Comparison of bias removal algorithms in track-to-track association[C]//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2007: 1-9.
[22] Bar-Shalom Y, Li X, Kirubarajan T. Estimation with applications to tracking and navigation[M]. New York: Wiley Online Library, 2001: 268-270.
[23] Lerro D, Bar-Shalom Y. Tracking with debiased consistent converted measurements versus EKF[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 1015-1022.
/
〈 |
|
〉 |